96 research outputs found

    Crystal structure of the signaling helix coiled-coil domain of the β1 subunit of the soluble guanylyl cyclase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The soluble guanylyl cyclase (sGC) is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC), and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix) family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner.</p> <p>Results</p> <p>To investigate the structure of the CC S-helix region, we crystallized and determined the structure of the CC domain of the sGCβ1 subunit comprising residues 348-409. The crystal structure was refined to 2.15 Å resolution.</p> <p>Conclusions</p> <p>The CC structure of sGCβ1 revealed a tetrameric arrangement comprised of a dimer of CC dimers. Each monomer is comprised of a long a-helix, a turn near residue P399, and a short second a-helix. The CC structure also offers insights as to how sGC homodimers are not as stable as (functionally) active heterodimers via a possible role for inter-helix salt-bridge formation. The structure also yielded insights into the residues involved in dimerization. In addition, the CC region is also known to harbor a number of congenital and man-made mutations in both membrane and soluble guanylyl cyclases and those function-affecting mutations have been mapped onto the CC structure. This mutant analysis indicated an importance for not only certain dimerization residue positions, but also an important role for other faces of the CC dimer which might perhaps interact with adjacent domains. Our results also extend beyond guanylyl cyclases as the CC structure is, to our knowledge, the first S-helix structure and serves as a model for all S-helix containing family members.</p

    Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses

    Get PDF
    Design of novel beta-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two alpha-amido-beta-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum beta-lactamase [ESBL]) beta-lactamases were evaluated. The 50% inhibitory concentrations (IC(50)s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k(2)/K for CTX-M-96 (24,000 M-1 s(-1)) was twice the reported value for KPC-2 (12,000 M-1 s(-1)); for MB_076, the k(2)/K values ranged from 1,200 M-1 s(-1) (KPC-2) to 3,900 M-1 s(-1) (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-&amp; ANGS; resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to beta-lactamase inhibitor design

    Structure of an Engineered β-Lactamase Maltose Binding Protein Fusion Protein: Insights into Heterotropic Allosteric Regulation

    Get PDF
    Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn2+ at low µM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn2+ concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn2+ acts to “twist tie” the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn2+ site only slightly affected Zn2+ inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn2+ sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms

    Identification of Residues in the Heme Domain of Soluble Guanylyl Cyclase that are Important for Basal and Stimulated Catalytic Activity

    Get PDF
    Nitric oxide signals through activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain) to the effector domain (catalytic domain), in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105) of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC

    Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation

    No full text
    The molecular mechanism of desensitization of soluble guanylyl cyclase (sGC), the NO receptor, has long remained unresolved. Posttranslational modification and redox state have been postulated to affect sGC sensitivity to NO but evidence has been lacking. We now show that sGC can be S-nitrosylated in primary aortic smooth muscle cells by S-nitrosocysteine (CSNO), an S-nitrosylating agent, in human umbilical vein endothelial cells after vascular endothelial growth factor treatment and in isolated aorta after sustained exposure to acetylcholine. Importantly, we show that S-nitrosylation of sGC results in decreased responsiveness to NO characterized by loss of NO-stimulated sGC activity. Desensitization of sGC is concentration- and time-dependent on exposure to CSNO, and sensitivity of sGC to NO can be restored and its S-nitrosylation prevented with cellular increase of thiols. We confirm in vitro with semipurified sGC that S-nitrosylation directly causes desensitization, suggesting that other cellular factors are not required. Two potential S-nitrosylated cysteines in the α- and β-subunits of sGC were identified by MS. Replacement of these cysteines, C243 in α and C122 in β, created mutants that were mostly resistant to desensitization. Structural analysis of the region near β-C122 in the homologous Nostoc H-NOX crystal structure indicates that this residue is in the vicinity of the heme and its S-nitrosylation could dampen NO activation by affecting the positions of key residues interacting with the heme. This study suggests that S-nitrosylation of sGC is a means by which memory of NO exposure is kept in smooth muscle cells and could be a mechanism of NO tolerance

    Exploring Additional Dimensions of Complexity in Inhibitor Design for Serine β-Lactamases: Mechanistic and Intra- and Inter-molecular Chemistry Approaches

    No full text
    As a bacterial resistance strategy, serine β-lactamases have evolved from cell wall synthesizing enzymes known as penicillin-binding proteins (PBP), by not only covalently binding β-lactam antibiotics but, also acquiring mechanisms of deacylating these antibiotics. This critical deacylation step leads to release of hydrolyzed and inactivated β-lactams, thereby providing resistance for the bacteria against these antibiotics targeting the cell wall. To combat β-lactamase-mediated antibiotic resistance, numerous β-lactamase inhibitors were developed that utilize various strategies to inactivate the β-lactamase. Most of these compounds are “mechanism-based” inhibitors that in some manner mimic the β-lactam substrate, having a carbonyl moiety and a negatively charged carboxyl or sulfate group. These compounds form a covalent adduct with the catalytic serine via an initial acylation step. To increase the life-time of the inhibitory covalent adduct intermediates, a remarkable array of different strategies was employed to improve inhibition potency. Such approaches include post-acylation intra- and intermolecular chemical rearrangements as well as affecting the deacylation water. These approaches transform the inhibitor design process from a 3-dimensional problem (i.e., XYZ coordinates) to one with additional dimensions of complexity as the reaction coordinate and time spent at each chemical state need to be taken into consideration. This review highlights the mechanistic intricacies of the design efforts of the β-lactamase inhibitors which so far have resulted in the development of “two generations” and 5 clinically available inhibitors
    corecore