7 research outputs found

    Controlling the conductance and noise of driven carbon-based Fabry-Perot devices

    Full text link
    We report on ac transport through carbon nanotube Fabry-Perot devices. We show that tuning the intensity of the ac gating induces an alternation of suppression and partial revival of the conductance interference pattern. For frequencies matching integer multiples of the level spacing of the system Δ\Delta the conductance remains irresponsive to the external field. In contrast, the noise in the low bias voltage limit behaves as in the static case only when the frequency matches an even multiple of the level spacing, thereby highlighting its phase sensitivity in a manifestation of the wagon-wheel effect in the quantum domain.Comment: 3+ pages, 3 figures. Slightly shortened version to appear in Applied Physics Letter

    AC transport in carbon-based devices: challenges and perspectives

    Get PDF
    Time-dependent fields are a valuable tool to control fundamental quantum phenomena in highly coherent low dimensional electron systems. Carbon nanotubes and graphene are a promising ground for these studies. Here we offer a brief overview of driven electronic transport in carbon-based materials with the main focus on carbon nanotubes. Recent results predicting control of the current and noise in nanotube based Fabry-P\'{e}rot devices are highlighted.Comment: 8 pages, 3 figures, article for C. R. Physique, special issue on carbon nanotube electronic

    Enhancing single-parameter quantum charge pumping in carbon-based devices

    Full text link
    We present a theoretical study of quantum charge pumping with a single ac gate applied to graphene nanoribbons and carbon nanotubes operating with low resistance contacts. By combining Floquet theory with Green's function formalism, we show that the pumped current can be tuned and enhanced by up to two orders of magnitude by an appropriate choice of device length, gate voltage intensity and driving frequency and amplitude. These results offer a promising alternative for enhancing the pumped currents in these carbon-based devices.Comment: 3.5 pages, 2 figure

    Directional photoelectric current across the bilayer graphene junction

    Full text link
    A directional photon-assisted resonant chiral tunneling through a bilayer graphene barrier is considered. An external electromagnetic field applied to the barrier switches the transparency TT in the longitudinal direction from its steady state value T=0 to the ideal T=1 at no energy costs. The switch happens because the a.c. field affects the phase correlation between the electrons and holes inside the graphene barrier changing the whole angular dependence of the chiral tunneling (directional photoelectric effect). The suggested phenomena can be implemented in relevant experiments and in various sub-millimeter and far-infrared optical electronic devices.Comment: 7 pages 5 figure

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Transport response of carbon-based resonant cavities under time-dependent potential and magnetic fields

    No full text
    Here we report theoretical transport calculations on carbon-based nanomaterials used as resonator cavities under the effects of a time-dependent field. A magnetic field is considered as an extra modulator tool, able to encode binary ON or OFF transmission states on the quantum systems. Regular either complex conductance Fabry-PĂ©rot patterns mapped onto gate vs. bias voltage diagrams can be revealed depending on the set of parameters used on the simulations (amplitude and frequency of the ac field and magnetic-field intensity). We discuss the interplay between the effects on the resonant cavity conductance, caused by the presence of an ac gate plate, which tends to delocalize the electronic wave functions, and an external magnetic field that oppositely localizes the electrons
    corecore