1,935 research outputs found
Sleep Environment Recommendations for Future Spaceflight Vehicles
Current evidence demonstrates that astronauts experience sleep loss and circadian desynchronization during spaceflight. Ground-based evidence demonstrates that these conditions lead to reduced performance, increased risk of injuries and accidents, and short and long-term health consequences. Many of the factors contributing to these conditions relate to the habitability of the sleep environment. Noise, inadequate temperature and airflow, and inappropriate lighting and light pollution have each been associated with sleep loss and circadian misalignment during spaceflight operations and on Earth. As NASA prepares to send astronauts on long-duration, deep space missions, it is critical that the habitability of the sleep environment provide adequate mitigations for potential sleep disruptors. We conducted a comprehensive literature review summarizing optimal sleep hygiene parameters for lighting, temperature, airflow, humidity, comfort, intermittent and erratic sounds, and privacy and security in the sleep environment. We reviewed the design and use of sleep environments in a wide range of cohorts including among aquanauts, expeditioners, pilots, military personnel and ship operators. We also reviewed the specifications and sleep quality data arising from every NASA spaceflight mission, beginning with Gemini. Finally, we conducted structured interviews with individuals experienced sleeping in non-traditional spaces including oil rig workers, Navy personnel, astronauts, and expeditioners. We also interviewed the engineers responsible for the design of the sleeping quarters presently deployed on the International Space Station. We found that the optimal sleep environment is cool, dark, quiet, and is perceived as safe and private. There are wide individual differences in the preferred sleep environment; therefore modifiable sleeping compartments are necessary to ensure all crewmembers are able to select personalized configurations for optimal sleep. A sub-optimal sleep environment is tolerable for only a limited time, therefore individual sleeping quarters should be designed for long-duration missions. In a confined space, the sleep environment serves a dual purpose as a place to sleep, but also as a place for storing personal items and as a place for privacy during non-sleep times. This need for privacy during sleep and wake appears to be critically important to the psychological well-being of crewmembers on long-duration missions
Temperature dependence of metal film growth via low‐energy electron diffraction intensity oscillations: Pt/Pd(100)
A commercial, conventional low‐energy electron diffraction apparatus is used to monitor Bragg intensity oscillations during the growth of Pt on Pd(100). The effect of substrate temperature between 80 and 400 K is investigated. Between 80 and 300 K, two to three Bragg oscillations are observed. The oscillation amplitude damps out quickly as film coverage increases at fixed temperature, but damp out less quickly at the higher substrate temperatures. Above ∼350 K, reconstruction of the Pt overlayer interferes with the oscillations. These data indicate that a kinetic barrier, most probably the barrier to surface diffusion,inhibits the system from achieving macroscopic equilibrium, and that the true equilibrium growth mode for this system is layer‐by‐layer. A new, analytical procedure is used to determine the coverage distribution within the layers from the Bragg intensities during growth. Bragg oscillations are predicted to occur at low substrate temperatures where surface diffusion is minimal and deposition is essentially random, but restricted to the fourfold hollow adsorption sites
Fatigue, Schedules, Sleep, and Sleepiness in U.S. Commercial Pilots During COVID-19
cOViD-19 has had a significant impact on the aviation industry. While reduced flying capacity may intuitively translate to reduced fatigue risk by way of fewer flights and duty hours, the actual impact of the pandemic on pilot fatigue is unknown. methods: We surveyed U.S. commercial airline pilots in late 2020 (N = 669) and early 2021 (N = 156) to assess the impact of COViD-19 on schedules and fatigue during the pandemic. results: Overall, pilots reported reduced flight and duty hours compared to prepandemic. Average sleep on workdays was slightly shorter in late 2020 (6.87 ± 1.14 h) and recovered to prepandemic levels in early 2021 (6.95 ± 1.11 h). Similarly, the frequency of sleepiness on days off and in-flight increased in late 2020, with 54% of pilots reporting an increase in in-flight sleepiness, then returned to prepandemic levels in early 2021. the use of in-flight sleepiness countermeasures remained the same across assessed time points. Pilots highlighted several factors which impacted their sleep and job performance, including limited access to nutritional food during duty days and layovers, reduced access to exercise facilities during layovers, increased stress due to job insecurity and health concerns, increased distractions and workload, and changes to scheduling. discussion: Despite a reduction in flights and duty days, COViD-19 led to increased sleepiness on days off and in flight, potentially due to the negative impact of lack of access to essential needs and heightened stress on sleep. Operators need to monitor the change in these COViD-19 related risks as the industry returns to full service
A Summary Of: Collecting Sleep, Circadian, Fatigue, and Performance Data in Complex Operational Environments
Sleep loss and circadian misalignment contribute to a meaningful proportion of operational accidents and incidents. Countermeasures and work scheduling designs aimed at mitigating fatigue are typically evaluated in controlled laboratory environments, but the effectiveness of translating such strategies to operational environments can be challenging to assess. This manuscript summarizes an approach for collecting sleep, circadian, fatigue, and performance data in a complex operational environment. We studied 44 airline pilots over 34 days while they flew a fixed schedule, which included a baseline data collection with 5 days of mid-morning flights, four early flights, four high-workload mid-day flights, and four late flights that landed after midnight. Each work block was separated by 3-4 days of rest. To assess sleep, participants wore a wrist-worn research-validated activity monitor continuously and completed daily sleep diaries. To assess the circadian phase, pilots were asked to collect all urine produced in four or eight hourly bins during the 24 h after each duty block for the assessment of 6-sulfatoxymelatonin (aMT6s), which is a biomarker of the circadian rhythm. To assess subjective fatigue and objective performance, participants were provided with a touchscreen device used to complete the Samn-Perelli Fatigue Scale and Psychomotor Vigilance Task (PVT) during and after each flight, and at wake-time, mid-day, and bedtime. Using these methods, it was found that sleep duration was reduced during early starts and late finishes relative to baseline. Circadian phase shifted according to duty schedule, but there was a wide range in the aMT6s peak between individuals on each schedule. PVT performance was worse on the early, high-workload, and late schedules relative to baseline. Overall, the combination of these methods was practical and effective for assessing the influence of sleep loss and circadian phase on fatigue and performance in a complex operational environment
Fatigue Monitoring in Scheduled Airline Operations
Reporting and monitoring are important facets of a comprehensive Fatigue Risk Management System. As part of efforts to reduce fatigue risks, we partnered with an international airline to study 44 (4 Female) volunteer pilots over a 4 week period that included baseline earlymiddaylate flight days and rest days off. All study procedures were approved by an IRB and participants provided written informed consent prior to beginning the study. Reduced sleep duration was associated with both early and late duties. Performance was influenced by duty timing, time of day and time awake. TLX ratings were highest for mental and effort demands, while ATC and weather were the most identified hassle factors. Melatonin analysis revealed individual variations in circadian shift over the study period. The study results highlight the value of FRMS monitoring in airline operations. Ongoing crew education should emphasize individual variation and effective mitigation strategies. Further study could focus on workload and time of day scheduling factors
Controlled Rest: Profile of Use, Challenges, and Best Practices
Despite the introduction of flight, duty, and rest time regulations to reduce the risk of sleepiness, airline pilots often encounter elevated sleepiness during flight. To combat this sleepiness, in some instances, pilots can take a short nap on the flight deck (controlled rest) to improve their alertness. Little is known, however, as to when and how often this countermeasure is used operationally. Methods: Forty-four pilots from a European carrier wore actiwatches and filled in an electronic sleep and work diary for approximately 2 weeks resulting in data from 239 flights. Self-reported in-flight rest periods were used to set rest intervals and sleep was estimated within these intervals using Philips Actiware 6.0.9. Wake threshold selection was set to medium; sleep threshold detection algorithm was set to 10 immobile minutes at sleep onset and sleep end. Timing of sleep periods was analyzed relative to home base time. Results: Preliminary analyses showed that controlled rest was taken on 46% (n=110) of flights. On 23 flights (10%) pilots reported taking two controlled rest periods. Sleep, as estimated by actigraphy, was achieved during 80% (n=106) of controlled rest periods. The mean sleep duration was 32 ( 12) minutes estimated within successful controlled rest periods. Approximately two-thirds (67.5%, n=81) of all rest periods were initiated during home base time night (0000h-0800h). On 11% (n=26) of flights, pilots also reported taking bunk rest (longer rest period in a designated sleeping facility).Conclusion:This study shows that controlled rest is commonly used as a countermeasure to sleepiness on the flight deck. Further analysis is required to determine what other factors contribute to the decision to take controlled rest, and how effective it is in reducing sleepiness on the flight deck
Microlensing of Globular Clusters as a Probe of Galactic Structure
The spatial distribution of compact dark matter in our Galaxy can be
determined in a few years of monitoring Galactic globular clusters for
microlensing. Globular clusters are the only dense fields of stars distributed
throughout the three-dimensional halo and hence are uniquely suited to probe
its structure. The microlensing optical depths towards different clusters have
varying contributions from the thin disk, thick disk, bulge, and halo of the
Galaxy. Although measuring individual optical depths to all the clusters is a
daunting task, we show that interesting Galactic structure information can be
extracted with as few as -- events in total for the entire globular
cluster system (observable with 2--5 years of monitoring). The globular cluster
microlensing is particularly sensitive to the core radius of the halo mass
distribution and to the scale length, surface mass density, and radial scale
height variations of the thin disk.Comment: 14 pages, 1 figure. Submitted to ApJ Letters. Uses aastex macro
Measurement of Visual Reaction Times Using Hand-held Mobile Devices
Modern mobile devices provide a convenient platform for collecting research data in the field. But,because the working of these devices is often cloaked behind multiple layers of proprietary system software, it can bedifficult to assess the accuracy of the data they produce, particularly in the case of timing. We have been collecting datain a simple visual reaction time experiment, as part of a fatigue testing protocol known as the Psychomotor Vigilance Test (PVT). In this protocol, subjects run a 5-minute block consisting of a sequence of trials in which a visual stimulus appears after an unpredictable variable delay. The subject is required to tap the screen as soon as possible after the appearance of the stimulus. In order to validate the reaction times reported by our program, we had subjects perform the task while a high-speed video camera recorded both the display screen, and a side view of the finger (observed in a mirror). Simple image-processing methods were applied to determine the frames in which the stimulus appeared and disappeared, and in which the finger made and broke contact with the screen. The results demonstrate a systematic delay between the initial contact by the finger and the detection of the touch by the software, having a value of 80 +- 20 milliseconds
Daytime Cognitive Performance in Response to Sunlight or Fluorescent Light Controlling for Sleep Duration
Light is the primary synchronizer of the human circadian rhythm and also has acute alerting effects. Our study involves and comparing the alertness, performance and sleep of participants in the NASA Ames Sustainability Base, which uses sunlight as its primary light source, to in a traditional office building which uses overhead florescent lighting and varying exposure to natural light. The purpose of this study is to determine whether the use of natural lighting as a primary light source improves daytime cognitive function and promotes nighttime sleep. Participants from the Sustainability Base will be matched by gender and age to individuals working in other NASA buildings. In a prior study we found no differences in performance between those working in the Sustainability Base and those working in other buildings. Unexpectedly, we found that the average sleep duration among participants in both buildings was short, which likely obscured our ability to detect a difference the effect of light exposure on alertness. Given that such sleep deprivation has negative effects on cognitive performance, in this iteration of the study we are asking the participants to maintain a regular schedule with eight hours in bed each night in order to control for the effect of self-selected sleep restriction. Over the course of one week, we will ask the participants to wear actiwatches continuously, complete a psychomotor vigilance task (PVT) and digit symbol substitution task (DSST) three times per day, and keep daily sleepwork diaries. We hope that this study will provide data to support the idea that natural lighting and green architectural design are optimal to enhance healthy nighttime sleep patterns and daytime cognitive performance
- …