134 research outputs found
Perfusion bioreactor culture of human adipose-derived stromal cells on decellularized adipose tissue scaffolds enhances in vivo adipose tissue regeneration
Tissue-engineering approaches hold promise to address the need in plastic and reconstructive surgery for new therapies that promote stable adipose tissue regeneration. Previous studies have demonstrated the potential of combining decellularized adipose tissue (DAT) scaffolds with adipose-derived stromal cells (ASCs) for volume augmentation applications. With the goal of enhancing in vivo angiogenesis and adipogenesis, this study evaluated the effects of culturing human ASCs on DAT scaffolds within a perfusion bioreactor. Using this system, the impact of both dynamic culture and hypoxic preconditioning were explored in vitro and in vivo. Initial studies compared the effects of 14 days of culture within the perfusion bioreactor under hypoxia (2% O2) or normoxia (~20% O2) on human ASC expansion and expression of hypoxia inducible factor-1 alpha (HIF-1α) in vitro relative to static cultured controls. The findings indicated that culturing within the bioreactor under hypoxia significantly increased ASC proliferation on the DAT, with a higher cell density observed in the scaffold periphery. Subsequent characterization in a subcutaneous implant model in athymic nude mice revealed that in vivo angiogenesis and adipogenesis were markedly enhanced when the ASCs were cultured on the DAT within the perfusion bioreactor under hypoxia for 14 days prior to implantation relative to the other culture conditions, as well as freshly seeded and unseeded DAT control groups. Overall, dynamic culture within the perfusion bioreactor system under hypoxia represents a promising approach for preconditioning ASCs on DAT scaffolds to enhance their capacity to stimulate angiogenesis and host-derived adipose tissue regeneration
Neutral, water-soluble poly(ester amide) hydrogels for cell encapsulation
© 2020 Elsevier Ltd Hydrogels are of significant interest for cell encapsulation and delivery in regenerative medicine. Poly(ester amide)s (PEAs) are a class of biodegradable polymers that exhibit promise for biomedical applications due to the degradability of the ester and amide linkages in their backbones, their preparation from biomolecules such as amino acids, and the ability to readily tune their properties through a modular synthesis approach. Water-soluble PEAs containing cationic arginine moieties have previously been developed, but to the best of our knowledge, neutral water-soluble PEAs based on non-charged amino acids have not been reported. Using a poly(ethylene glycol) (PEG)-based macromonomer, we describe here the syntheses of water-soluble amino acid-containing PEAs containing crosslinkable alkenes in their backbones. These PEAs were converted into hydrogels through photoinitiated crosslinking and their properties were compared, including gel content, water content, swelling, and Young\u27s moduli. Subsequent cell culture studies on a subset of hydrogels confirmed that human adipose-derived stromal cells (ASCs) showed \u3e 75% viability at 24 h post-encapsulation. To explore the potential of the hydrogels as cell delivery systems for applications in soft tissue regeneration, adipogenic differentiation of the encapsulated ASCs was probed in vitro at 7 days. Analysis of glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity and intracellular lipid accumulation indicated that the hydrogels provided a supportive environment for ASC adipogenesis. Overall, these PEAs provide a new platform that warrants further development for regenerative medicine applications
Lineage tracing of Foxd1-expressing embryonic progenitors to assess the role of divergent embryonic lineages on adult dermal fibroblast function
Recent studies have highlighted the functional diversity of dermal fibroblast populations in health and disease, with part of this diversity linked to fibroblast lineage and embryonic origin. Fibroblasts derived from foxd1-expressing progenitors contribute to the myofibroblast populations present in lung and kidney fibrosis in mice but have not been investigated in the context of dermal wound repair. Using a Cre/Lox system to genetically track populations derived from foxd1-expressing progenitors, lineage-positive fibroblasts were identified as a subset of the dermal fibroblast population. During development, lineage-positive cells were most abundant within the dorsal embryonic tissues, contributing to the developing dermal fibroblast population, and remaining in this niche into adulthood. In adult mice, assessment of fibrosis-related gene expression in lineage-positive and lineage-negative populations isolated from wounded and unwounded dorsal skin was performed, identifying an enrichment of transcripts associated with matrix synthesis and remodeling in the lineage-positive populations. Using a novel excisional wound model, ventral skin healed with a greatly reduced frequency of foxd1 lineage-positive cells. This work supports that the embryonic origin of fibroblasts is an important predictor of fibroblast function, but also highlights that within disparate regions, fibroblasts of different lineages likely undergo convergent differentiation contributing to phenotypic similarities
Fabrication of extracellular matrix-derived foams and microcarriers as tissue-specific cell culture and delivery platforms
© 2017 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. Cell function is mediated by interactions with the extracellular matrix (ECM), which has complex tissue-specific composition and architecture. The focus of this article is on the methods for fabricating ECM-derived porous foams and microcarriers for use as biologically-relevant substrates in advanced 3D in vitro cell culture models or as pro-regenerative scaffolds and cell delivery systems for tissue engineering and regenerative medicine. Using decellularized tissues or purified insoluble collagen as a starting material, the techniques can be applied to synthesize a broad array of tissue-specific bioscaffolds with customizable geometries. The approach involves mechanical processing and mild enzymatic digestion to yield an ECM suspension that is used to fabricate the three-dimensional foams or microcarriers through controlled freezing and lyophilization procedures. These pure ECM-derived scaffolds are highly porous, yet stable without the need for chemical crosslinking agents or other additives that may negatively impact cell function. The scaffold properties can be tuned to some extent by varying factors such as the ECM suspension concentration, mechanical processing methods, or synthesis conditions. In general, the scaffolds are robust and easy to handle, and can be processed as tissues for most standard biological assays, providing a versatile and user-friendly 3D cell culture platform that mimics the native ECM composition. Overall, these straightforward methods for fabricating customized ECM-derived foams and microcarriers may be of interest to both biologists and biomedical engineers as tissue-specific cell-instructive platforms for in vitro and in vivo applications
Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications
Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of theASC populations.More specifically, ASCs isolated fromboth intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34+ cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentumdisplayed the highest levels of osteogenicmarkers in culture. Through cellcultureanalysisunder hypoxic (5%O2) conditions,oxygentensionwas shownto be a keymediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source. © AlphaMed Press
Investigating the Effects of Tissue-Specific Extracellular Matrix on the Adipogenic and Osteogenic Differentiation of Human Adipose-Derived Stromal Cells Within Composite Hydrogel Scaffolds
© Copyright © 2019 Shridhar, Amsden, Gillies and Flynn. While it has been postulated that tissue-specific bioscaffolds derived from the extracellular matrix (ECM) can direct stem cell differentiation, systematic comparisons of multiple ECM sources are needed to more fully assess the benefits of incorporating tissue-specific ECM in stem cell culture and delivery platforms. To probe the effects of ECM sourced from decellularized adipose tissue (DAT) or decellularized trabecular bone (DTB) on the adipogenic and osteogenic differentiation of human adipose-derived stem/stromal cells (ASCs), a novel detergent-free decellularization protocol was developed for bovine trabecular bone that complemented our established detergent-free decellularization protocol for human adipose tissue and did not require specialized equipment or prolonged incubation times. Immunohistochemical and biochemical characterization revealed enhanced sulphated glycosaminoglycan content in the DTB, while the DAT contained higher levels of collagen IV, collagen VI and laminin. To generate platforms with similar structural and biomechanical properties to enable assessment of the compositional effects of the ECM on ASC differentiation, micronized DAT and DTB were encapsulated with human ASCs within methacrylated chondroitin sulfate (MCS) hydrogels through UV-initiated crosslinking. High ASC viability (\u3e90%) was observed over 14 days in culture. Adipogenic differentiation was enhanced in the MCS+DAT composites relative to the MCS+DTB composites and MCS controls after 14 days of culture in adipogenic medium. Osteogenic differentiation studies revealed a peak in alkaline phosphatase (ALP) enzyme activity at 7 days in the MCS+DTB group cultured in osteogenic medium, suggesting that the DTB had bioactive effects on osteogenic protein expression. Overall, the current study suggests that tissue-specific ECM sourced from DAT or DTB can act synergistically with soluble differentiation factors to enhance the lineage-specific differentiation of human ASCs within 3-D hydrogel systems
Techniques for the isolation of high-quality RNA from cells encapsulated in chitosan hydrogels
Extracting high-quality RNA from hydrogels containing polysaccharide components is challenging, as traditional RNA isolation techniques designed for cells and tissues can have limited yields and purity due to physiochemical interactions between the nucleic acids and the biomaterials. In this study, a comparative analysis of several different RNA isolation methods was performed on human adipose-derived stem cells photo-encapsulated within methacrylated glycol chitosan hydrogels. The results demonstrated that RNA isolation methods with cetyl trimethylammonium bromide (CTAB) buffer followed by purification with an RNeasy® mini kit resulted in low yields of RNA, except when the samples were preminced directly within the buffer. In addition, genomic DNA contamination during reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was observed in the hydrogels processed with the CTAB-based methods. Isolation methods using TRIzol® in combination with one of a Qiaex® gel extraction kit, an RNeasy® mini kit, or an extended solvent purification method extracted RNA suitable for gene amplification, with no evidence of genomic contamination. The latter two methods yielded the best results in terms of yield and amplification efficiency. Predigestion of the scaffolds with lysozyme was investigated as a possible means of enhancing RNA extraction from the polysaccharide gels, with no improvements observed in terms of the purity, yield, or amplification efficiency. Overall, this work highlights the application of a TRIzol®+extended solvent purification method for optimizing RNA extraction that can be applied to obtain reliable and accurate gene expression data in studies investigating cells seeded in chitosan-based scaffolds. © 2013 Mary Ann Liebert, Inc
Polyesters based on aspartic acid and poly(ethylene glycol): Functional polymers for hydrogel preparation
Hydrogels are commonly used as scaffolds for the preparation of three-dimensional tissue constructs and for the encapsulation and delivery of cells in regenerative medicine. Polyesters are an attractive class of polymers for hydrogel preparation. However, most polyesters have hydrophobic backbones and lack pendent groups that can be chemically functionalized. We describe here the development of water-soluble polyesters based on aspartic acid and poly(ethylene glycol) (PEG) (600 or 1500 g/mol), having pendent reactive amines. The reactivity of these amines with methacrylic anhydride, maleic anhydride, and itaconic anhydride was explored for the introduction of crosslinkable groups. The resulting methacrylamide-functionalized polymers were successfully crosslinked to form hydrogels using a redox-initiated free radical polymerization. The use of 10% (weight/volume) of polymer, and 10 mM of potassium persulfate and tetramethylethylenediamine led to high (\u3e97%) gel content, and compressive moduli of 13–21 kPa. Human adipose-derived stromal cells were encapsulated during the crosslinking process and exhibited greater than 80% viability in the hydrogels prepared from the polyester containing 600 g/mol PEG, with lower viability observed for the polymer containing 1500 g/mol PEG. These results support the potential for aspartic acid-based copolymers with short PEG chains in the backbone to serve as a platform for cell encapsulation, with additional opportunities for further functionalization available in the future
Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response
Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms
A Comparison of NAL and DSL Prescriptive Methods for Paediatric Hearing-Aid Fitting: Predicted Speech Intelligibility and Loudness
Objective: To examine the impact of prescription on predicted speech intelligibility and loudness for children. Design: A between-group comparison of speech intelligibility index (SII) and loudness, based on hearing aids fitted according to NAL-NL1, DSL v4.1, or DSL m[i/o] prescriptions. A within-group comparison of gains prescribed by DSL m[i/o] and NAL-NL2 for children in terms of SII and loudness. Study sample: Participants were 200 children, who were randomly assigned to first hearing-aid fitting with either NAL-NL1, DSL v4.1, or DSL m[i/o]. Audiometric data and hearing-aid data at 3 years of age were used. Results: On average, SII calculated on the basis of hearing-aid gains were higher for DSL than for NAL-NL1 at low input level, equivalent at medium input level, and higher for NAL-NL1 than DSL at high input level. Greater loudness was associated with DSL than with NAL-NL1, across a range of input levels. Comparing NAL-NL2 and DSL m[i/o] target gains revealed higher SII for the latter at low input level. SII was higher for NAL-NL2 than for DSL m[i/o] at medium- and high-input levels despite greater loudness for gains prescribed by DSL m[i/o] than by NAL-NL2. Conclusion: The choice of prescription has minimal effects on speech intelligibility predictions but marked effects on loudness predictions
- …