23 research outputs found

    ErtĂĽchtigung der Flachschleifmaschine ELB SF 30

    Get PDF
    Aufbauend auf dem Praktikumsbericht wird in der vorliegenden Bachelorarbeit, das Thema „Ertüchtigung der Flachschleifmaschine ELB“ weiter behandelt. Es wird dabei speziell die Einführung eines neuen Bedienpanels an der Maschine konkretisiert. Zu Beginn erfolgt die Auswahl eines geeigneten Panels, welches zu der vorhandenen Steuerung kompatibel ist. Daraufhin folgt die Vorstellung der Visualisierungssoftware, sowie der Software zum Testen der projektierten Oberfläche des Bediengerätes. Im weiteren Verlauf finden sich Erläuterungen zur Programmierung des Panels, bezogen auf das ELB-Projekt wieder. Das letzte Kapitel bezieht sich auf die konkrete SPS-Lösung zwei ausgewählter Steuerungsfunktionen, zum einen die Magnetsteuerung und zum anderen die Querantriebsteuerung

    Ebola update

    No full text

    Nur77 controls tolerance induction, terminal differentiation, and effector functions in NKT cells

    No full text
    Natural killer T (NKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. NKT cells constitutively express high levels of Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. Nur77 is associated with tolerance induction in conventional T cells but is of hitherto unknown function in NKT cells. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates NKT cell development. Introgression of a rearranged Vα14-Jα18 a-chain gene into the Nur77tg (Nur77tg;Vα14tg) mouse rescued development up to an early precursor stage 0. NKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors, yielding interleukin-4-producing NKT2 but not interferon-g-producing NKT1 cell subsets. Nonetheless, NKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to glycolipid agonists. Hence, Nur77 integrates signals emanating from the TCR to control NKT cell tolerance, terminal differentiation, and effector functions

    Nur77 controls tolerance induction, terminal differentiation, and effector functions in semi-invariant natural killer T cells

    No full text
    Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of&nbsp;Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged&nbsp;V&alpha;14-J&alpha;18&nbsp;TCR-&alpha; chain gene into the Nur77tg&nbsp;(Nur77tg;V&alpha;14tg) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4&ndash;producing NKT2 cell subset but not IFN-&gamma;&ndash;producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions.</p

    IL-15 Regulates Homeostasis and Terminal Maturation of NKT Cells

    No full text
    Semi-invariant NKT cells are thymus-derived innate-like lymphocytes that modulate microbial and tumor immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learned regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL-15–mediated thymic and peripheral NKT cell survival critically depended on Bcl-xL expression. Additionally, IL-15 regulated thymic developmental stage 2 to stage 3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic NKT cells. The loss of IL-15 also resulted in poor expression of key effector molecules such as IFN-γ, granzyme A and C, as well as several NK cell receptors, which are also regulated by T-bet in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-xL, and effector differentiation, which is consistent with a role of T-bet in regulating terminal maturation

    IL-15 Regulates Homeostasis and Terminal Maturation of NKT Cells

    No full text
    Semi-invariant NKT cells are thymus-derived innate-like lymphocytes that modulate microbial and tumor immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learned regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL-15–mediated thymic and peripheral NKT cell survival critically depended on Bcl-xL expression. Additionally, IL-15 regulated thymic developmental stage 2 to stage 3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic NKT cells. The loss of IL-15 also resulted in poor expression of key effector molecules such as IFN-γ, granzyme A and C, as well as several NK cell receptors, which are also regulated by T-bet in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-xL, and effector differentiation, which is consistent with a role of T-bet in regulating terminal maturation

    Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV

    No full text
    Recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) is the most advanced Ebola virus vaccine candidate and is currently being used to combat the outbreak of Ebola virus disease (EVD) in the Democratic Republic of the Congo (DRC). Here we examine the humoral immune response in a subset of human volunteers enrolled in a phase 1 rVSV-ZEBOV vaccination trial by performing comprehensive single B cell and electron microscopy structure analyses. Four studied vaccinees show polyclonal, yet reproducible and convergent B cell responses with shared sequence characteristics. EBOV-targeting antibodies cross-react with other Ebolavirus species, and detailed epitope mapping revealed overlapping target epitopes with antibodies isolated from EVD survivors. Moreover, in all vaccinees, we detected highly potent EBOV-neutralizing antibodies with activities comparable or superior to the monoclonal antibodies currently used in clinical trials. These include antibodies combining the IGHV3-15/IGLV1-40 immunoglobulin gene segments that were identified in all investigated individuals. Our findings will help to evaluate and direct current and future vaccination strategies and offer opportunities for novel EVD therapies
    corecore