11 research outputs found

    Liraglutide and sitagliptin have no effect on intestinal microbiota composition : A 12-week randomized placebo-controlled trial in adults with type 2 diabetes

    Get PDF
    Aim: Preclinical data suggest that treatment with either glucagon-like peptide (GLP)-1 receptor agonists or dipeptidyl peptidase (DPP)-4 inhibitors could change the intestinal microbiome and thereby contribute to their beneficial (cardio)metabolic effects. Therefore, our study aimed to investigate the effects of these agents on microbiota composition in adults with type 2 diabetes (T2D). Methods: A total of 51 adults with T2D (mean +/- SD: age 62.8 +/- 6.9 years, BMI 31.8 +/- 4.1 kg/m(2), HbA(1c) 7.3 +/- 0.6%) treated with metformin and/or sulphonylureas were included in the 12-week randomized, double-blind trial. Patients were given the GLP-1 receptor agonist liraglutide (1.8 mg sc) or the DPP-4 inhibitor sitagliptin (100 mg), or matching placebos, once daily for 12 weeks. Faecal samples were collected at baseline and at 12 weeks after the start of the intervention. Microbiota analyses were performed by 16S rRNA gene-sequencing analysis. Bile acids were measured in faeces and plasma. Results: Liraglutide decreased HbA(1c) by 1.3% (95% CI: -1.7 to -0.9) and tended to reduce body weight (-1.7 kg, 95% CI: -3.6 to 0.3), but increased faecal secondary bile acid deoxycholic acid. Sitagliptin lowered HbA(1c) by 0.8% (95% CI: -1.4 to -0.4) while body weight remained stable (-0.8 kg, 95% CI: -2.7 to 1.0), but increased faecal levels of cholic acid, chenodeoxycholic acid and ursodeoxycholic acid. However, neither liraglutide nor sitagliptin affected either alpha or beta diversity of the intestinal microbiota, nor were changes in microbial composition related to clinical parameters. Conclusion: These data suggest that the beneficial effects of liraglutide and sitagliptin on glucose metabolism, body weight and bile acids, when used as add-on therapies to metformin or sulphonylureas, are not linked to changes in the intestinal microbiota (NCT01744236). (C) 2021 The Authors. Published by Elsevier Masson SAS.Peer reviewe

    The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids

    No full text
    Introduction: Malnutrition refers to both over- and undernutrition and results from a disruption in energy balance. It affects one in three people worldwide and is associated with increased morbidity and mortality. The intestinal microbiota represents a newly identified factor that might contribute to the development of malnutrition, as it harbors traits that complement the human metabolic and endocrine capabilities, thereby influencing energy balance. Areas covered: In the current review, we aim to give a comprehensive overview on the microbiota, its development and its possible influence on energy balance, with emphasis the role of short-chain fatty acids. We also consider microbial characteristics associated with obesity and undernutrition and evaluate microbial manipulating strategies. The PubMed database was searched using the terms: ‘gastrointestinal microbiota’, ‘volatile fatty acids’, ‘malnutrition’, ‘undernutrition’, ‘obesity’, ‘insulin resistance’, ‘prebiotics’, ‘probiotics’, ‘antibiotics’ and ‘fecal microbiota transplantation’. Expert commentary: Microbiota make important contributions to the regulation of energy balance, whereas microbial disturbances might predispose to malnutrition. If we manage to manipulate the microbiota to our benefit, it could lead to preventive or therapeutic strategies targeting malnutrition

    Associations of the oral microbiota and Candida with taste, smell, appetite and undernutrition in older adults

    No full text
    Poor taste and smell function are widely thought to contribute to the development of poor appetite and undernutrition in older adults. It has been hypothesized that the oral microbiota play a role as well, but evidence is scarce. In a cross-sectional cohort of 356 older adults, we performed taste and smell tests, collected anthropometric measurements and tongue swabs for analysis of microbial composition (16S rRNA sequencing) and Candida albicans abundance (qPCR). Older age, edentation, poor smell and poor appetite were associated with lower alpha diversity and explained a significant amount of beta diversity. Moreover, a lower Streptococcus salivarius abundance was associated with poor smell identification score, whereas high C. albicans abundance seemed to be associated with poor smell discrimination score. In our population, neither the tongue microbiota, nor C. albicans were associated with poor taste or directly with undernutrition. Our findings do suggest a host-microbe interaction with regard to smell perception and appetite

    Poor Taste and Smell Are Associated with Poor Appetite, Macronutrient Intake, and Dietary Quality but Not with Undernutrition in Older Adults

    No full text
    Background: Age-related declines in taste and smell function are widely assumed to contribute to the decrease in appetite and the development of undernutrition in older adults. Objectives: Here we aim to assess the associations of both taste and smell function with several nutrition-related outcomes in a single study, with poor appetite and undernutrition as primary outcomes. Methods: This is a cross-sectional cohort study of 359 community-dwelling Dutch older adults, aged 65-93 y. Taste function was measured for all 5 basic tastes. Smell function was assessed with 3 tests: for odor identification, discrimination, and threshold. Self-reported taste and smell, appetite, energy (kcal/d) and macronutrient (% energy) intake, and covariates were assessed with extensive questionnaires. Dietary quality was calculated using the Dutch Healthy Diet index 2015, Alternative Healthy Eating Index 2010, and Mediterranean Diet Score. Body measurements included body weight (current and 2 y prior), height, and body impedance analysis. Data were analyzed via multiple logistic and linear regression. Results: Of our sample, 9.2% had poor taste and 17.0% poor smell, 6.1% had poor appetite, and 21.4% were undernourished. Self-reported poor taste (OR: 8.44; 95% CI: 1.56, 45.56; P = 0.013) was associated with poor appetite, but no other taste or smell score was associated with either poor appetite or undernutrition. Some associations were found of individual taste and smell scores with macronutrient intake and dietary quality. Self-reported poor taste and smell were both consistently associated with poorer dietary quality. Conclusions: In community-dwelling older adults, specific taste and smell impairments may have diverse consequences for appetite, food intake, or dietary quality. However, this does not necessarily result in undernutrition. The consistent associations of self-reported poor taste and smell with poor dietary quality do underline the usefulness of this information when screening for nutritional risk

    Gut microbial characteristics in poor appetite and undernutrition: a cohort of older adults and microbiota transfer in germ-free mice

    No full text
    Background: Older adults are particularly prone to the development of poor appetite and undernutrition. Possibly, this is partly due to the aged gut microbiota. We aimed to evaluate the gut microbiota in relation to both poor appetite and undernutrition in community-dwelling older adults. Furthermore, we studied the causal effects of the microbiota on body weight and body composition by transferring faecal microbiota from cohort participants into germ-free mice. Methods: First, we conducted a cross-sectional cohort study of 358 well-phenotyped Dutch community-dwelling older adults from the Longitudinal Aging Study Amsterdam. Data collection included body measurements, a faecal and blood sample, as well as extensive questionnaires on appetite, dietary intake, and nutritional status. Appetite was assessed by the Council of Nutrition Appetite Questionnaire (CNAQ) and undernutrition was defined by either a low body mass index (BMI) (BMI 5% body weight loss averaged over the last 2 years. Gut microbiota composition was determined with 16S rRNA sequencing. Next, we transferred faecal microbiota from 12 cohort participants with and without low BMI or recent weight loss into a total of 41 germ-free mice to study the potential causal effects of the gut microbiota on host BMI and body composition. Results: The mean age (range) of our cohort was 73 (65–93); 58.4% was male. Seventy-seven participants were undernourished and 21 participants had poor appetite (CNAQ < 28). A lower abundance of the genus Blautia was associated with undernutrition (log2 fold change = −0.57, Benjamini–Hochberg-adjusted P = 0.008), whereas higher abundances of taxa from Lachnospiraceae, Ruminococcaceae UCG-002, Parabacteroides merdae, and Dorea formicigenerans were associated with poor appetite. Furthermore, participants with poor appetite or undernutrition had reduced levels of faecal acetate (P = 0.006 and 0.026, respectively). Finally, there was a trend for the mice that received faecal microbiota from older adults with low BMI to weigh 1.26 g less after 3 weeks (P = 0.086) and have 6.13% more lean mass (in % body weight, P = 0.067) than the mice that received faecal microbiota from older adults without low BMI or recent weight loss. Conclusions: This study demonstrates several associations of the gut microbiota with both poor appetite and undernutrition in older adults. Moreover, it is the first to explore a causal relation between the aged gut microbiota and body weight and body composition in the host. Possibly, microbiota-manipulating strategies will benefit older adults prone to undernutrition

    Personalized Dietary Advice to Increase Protein Intake in Older Adults Does Not Affect the Gut Microbiota, Appetite or Central Processing of Food Stimuli in Community-Dwelling Older Adults: A Six-Month Randomized Controlled Trial

    No full text
    Expert groups argue to raise the recommended daily allowance for protein in older adults from 0.8 to 1.2 g/kg/day to prevent undernutrition. However, protein is thought to increase satiety, possibly through effects on gut microbiota and central appetite regulation. If true, raising daily protein intake may work counterproductively. In a randomized controlled trial, we evaluated the effects of dietary advice aimed at increasing protein intake to 1.2 g/kg adjusted body weight/day (g/kg aBW/day) on appetite and gut microbiota in 90 community-dwelling older adults with habitual protein intake <1.0 g/kg aBW/day (Nintervention = 47, Ncontrol = 43). Food intake was determined by 24-h dietary recalls and gut microbiota by 16S rRNA sequencing. Functional magnetic resonance imaging (fMRI) scans were performed in a subgroup of 48 participants to evaluate central nervous system responses to food-related stimuli. Both groups had mean baseline protein intake of 0.8 ± 0.2 g/kg aBW/day. At 6 months’ follow-up this increased to 1.2 ± 0.2 g/kg aBW/day for the intervention group and 0.9 ± 0.2 g/kg aBW/day for the control group. Microbiota composition was not affected, nor were appetite or brain activity in response to food-related stimuli. Increasing protein intake in older adults to 1.2 g/kg aBW/day does not negatively impact the gut microbiota or suppress appetite

    Personalized Dietary Advice to Increase Protein Intake in Older Adults Does Not Affect the Gut Microbiota, Appetite or Central Processing of Food Stimuli in Community-Dwelling Older Adults: A Six-Month Randomized Controlled Trial

    No full text
    Expert groups argue to raise the recommended daily allowance for protein in older adults from 0.8 to 1.2 g/kg/day to prevent undernutrition. However, protein is thought to increase satiety, possibly through effects on gut microbiota and central appetite regulation. If true, raising daily protein intake may work counterproductively. In a randomized controlled trial, we evaluated the effects of dietary advice aimed at increasing protein intake to 1.2 g/kg adjusted body weight/day (g/kg aBW/day) on appetite and gut microbiota in 90 community-dwelling older adults with habitual protein intake intervention = 47, Ncontrol = 43). Food intake was determined by 24-h dietary recalls and gut microbiota by 16S rRNA sequencing. Functional magnetic resonance imaging (fMRI) scans were performed in a subgroup of 48 participants to evaluate central nervous system responses to food-related stimuli. Both groups had mean baseline protein intake of 0.8 ± 0.2 g/kg aBW/day. At 6 months’ follow-up this increased to 1.2 ± 0.2 g/kg aBW/day for the intervention group and 0.9 ± 0.2 g/kg aBW/day for the control group. Microbiota composition was not affected, nor were appetite or brain activity in response to food-related stimuli. Increasing protein intake in older adults to 1.2 g/kg aBW/day does not negatively impact the gut microbiota or suppress appetite

    Personalized Dietary Advice to Increase Protein Intake in Older Adults Does Not Affect the Gut Microbiota, Appetite or Central Processing of Food Stimuli in Community-Dwelling Older Adults: A Six-Month Randomized Controlled Trial

    No full text
    Expert groups argue to raise the recommended daily allowance for protein in older adults from 0.8 to 1.2 g/kg/day to prevent undernutrition. However, protein is thought to increase satiety, possibly through effects on gut microbiota and central appetite regulation. If true, raising daily protein intake may work counterproductively. In a randomized controlled trial, we evaluated the effects of dietary advice aimed at increasing protein intake to 1.2 g/kg adjusted body weight/day (g/kg aBW/day) on appetite and gut microbiota in 90 community-dwelling older adults with habitual protein intake <1.0 g/kg aBW/day (N intervention = 47, N control = 43). Food intake was determined by 24-h dietary recalls and gut microbiota by 16S rRNA sequencing. Functional magnetic resonance imaging (fMRI) scans were performed in a subgroup of 48 participants to evaluate central nervous system responses to food-related stimuli. Both groups had mean baseline protein intake of 0.8 ± 0.2 g/kg aBW/day. At 6 months’ follow-up this increased to 1.2 ± 0.2 g/kg aBW/day for the intervention group and 0.9 ± 0.2 g/kg aBW/day for the control group. Microbiota composition was not affected, nor were appetite or brain activity in response to food-related stimuli. Increasing protein intake in older adults to 1.2 g/kg aBW/day does not negatively impact the gut microbiota or suppress appetite
    corecore