1,967 research outputs found

    Bethe lattice solution of a model of SAW's with up to 3 monomers per site and no restriction

    Full text link
    In the multiple monomers per site (MMS) model, polymeric chains are represented by walks on a lattice which may visit each site up to K times. We have solved the unrestricted version of this model, where immediate reversals of the walks are allowed (RA) for K = 3 on a Bethe lattice with arbitrary coordination number in the grand-canonical formalism. We found transitions between a non-polymerized and two polymerized phases, which may be continuous or discontinuous. In the canonical situation, the transitions between the extended and the collapsed polymeric phases are always continuous. The transition line is partly composed by tricritical points and partially by critical endpoints, both lines meeting at a multicritical point. In the subspace of the parameter space where the model is related to SASAW's (self-attracting self-avoiding walks), the collapse transition is tricritical. We discuss the relation of our results with simulations and previous Bethe and Husimi lattice calculations for the MMS model found in the literature.Comment: 25 pages, 9 figure

    Orientational correlations in confined DNA

    Get PDF
    We study how the orientational correlations of DNA confined to nanochannels depend on the channel diameter D by means of Monte Carlo simulations and a mean-field theory. This theory describes DNA conformations in the experimentally relevant regime where the Flory-de Gennes theory does not apply. We show how local correlations determine the dependence of the end-to-end distance of the DNA molecule upon D. Tapered nanochannels provide the necessary resolution in D to study experimentally how the extension of confined DNA molecules depends upon D. Our experimental and theoretical results are in qualitative agreement.Comment: Revised version including supplemental material, 7 pages, 8 figure

    Leadership Statistics in Random Structures

    Full text link
    The largest component (``the leader'') in evolving random structures often exhibits universal statistical properties. This phenomenon is demonstrated analytically for two ubiquitous structures: random trees and random graphs. In both cases, lead changes are rare as the average number of lead changes increases quadratically with logarithm of the system size. As a function of time, the number of lead changes is self-similar. Additionally, the probability that no lead change ever occurs decays exponentially with the average number of lead changes.Comment: 5 pages, 3 figure

    Critical Dynamics of Gelation

    Full text link
    Shear relaxation and dynamic density fluctuations are studied within a Rouse model, generalized to include the effects of permanent random crosslinks. We derive an exact correspondence between the static shear viscosity and the resistance of a random resistor network. This relation allows us to compute the static shear viscosity exactly for uncorrelated crosslinks. For more general percolation models, which are amenable to a scaling description, it yields the scaling relation k=ϕβ k=\phi-\beta for the critical exponent of the shear viscosity. Here β\beta is the thermal exponent for the gel fraction and ϕ\phi is the crossover exponent of the resistor network. The results on the shear viscosity are also used in deriving upper and lower bounds on the incoherent scattering function in the long-time limit, thereby corroborating previous results.Comment: 34 pages, 2 figures (revtex, amssymb); revised version (minor changes

    A two-parameter random walk with approximate exponential probability distribution

    Full text link
    We study a non-Markovian random walk in dimension 1. It depends on two parameters eps_r and eps_l, the probabilities to go straight on when walking to the right, respectively to the left. The position x of the walk after n steps and the number of reversals of direction k are used to estimate eps_r and eps_l. We calculate the joint probability distribution p_n(x,k) in closed form and show that, approximately, it belongs to the exponential family.Comment: 12 pages, updated reference to companion paper cond-mat/060126

    Charge renormalization and phase separation in colloidal suspensions

    Full text link
    We explore the effects of counterion condensation on fluid-fluid phase separation in charged colloidal suspensions. It is found that formation of double layers around the colloidal particles stabilizes suspensions against phase separation. Addition of salt, however, produces an instability which, in principle, can lead to a fluid-fluid separation. The instability, however, is so weak that it should be impossible to observe a fully equilibrated coexistence experimentally.Comment: 7 pages, Europhysics Letters (in press

    Scaling and Crossover to Tricriticality in Polymer Solutions

    Full text link
    We propose a scaling description of phase separation of polymer solutions. The scaling incorporates three universal limiting regimes: the Ising limit asymptotically close to the critical point of phase separation, the "ideal-gas" limit for the pure-solvent phase, and the tricritical limit for the polymer-rich phase asymptotically close to the theta point. We have also developed a phenomenological crossover theory based on the near-tricritical-point Landau expansion renormalized by fluctuations. This theory validates the proposed scaled representation of experimental data and crossover to tricriticality.Comment: 4 pages, 3 figure

    Unicyclic Components in Random Graphs

    Full text link
    The distribution of unicyclic components in a random graph is obtained analytically. The number of unicyclic components of a given size approaches a self-similar form in the vicinity of the gelation transition. At the gelation point, this distribution decays algebraically, U_k ~ 1/(4k) for k>>1. As a result, the total number of unicyclic components grows logarithmically with the system size.Comment: 4 pages, 2 figure

    Multifractal behavior of linear polymers in disordered media

    Get PDF
    The scaling behavior of linear polymers in disordered media modelled by self-avoiding random walks (SAWs) on the backbone of two- and three-dimensional percolation clusters at their critical concentrations p_c is studied. All possible SAW configurations of N steps on a single backbone configuration are enumerated exactly. We find that the moments of order q of the total number of SAWs obtained by averaging over many backbone configurations display multifractal behavior, i.e. different moments are dominated by different subsets of the backbone. This leads to generalized coordination numbers \mu_q and enhancement exponents \gamma_q, which depend on q. Our numerical results suggest that the relation \mu_1 = p_ c \mu between the first moment \mu_1 and its regular lattice counterpart \mu is valid.Comment: 11 pages, 12 postscript figures, to be published in Phys. Rev.

    Elasticity near the vulcanization transition

    Full text link
    Signatures of the vulcanization transition--amorphous solidification induced by the random crosslinking of macromolecules--include the random localization of a fraction of the particles and the emergence of a nonzero static shear modulus. A semi-microscopic statistical-mechanical theory is presented of the latter signature that accounts for both thermal fluctuations and quenched disorder. It is found (i) that the shear modulus grows continuously from zero at the transition, and does so with the classical exponent, i.e., with the third power of the excess cross-link density and, quite surprisingly, (ii) that near the transition the external stresses do not spoil the spherical symmetry of the localization clouds of the particles.Comment: REVTEX, 5 pages. Minor change
    corecore