25 research outputs found

    Mean Field Fluid Behavior of the Gaussian Core Model

    Full text link
    We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential, first considered by Stillinger (J. Chem. Phys. 65, 3968 (1976)), behaves like a weakly correlated ``mean field fluid'' over a surprisingly wide density and temperature range. In the bulk the structure of the fluid phase is accurately described by the random phase approximation for the direct correlation function, and by the more sophisticated HNC integral equation. The resulting pressure deviates very little from a simple, mean-field like, quadratic form in the density, while the low density virial expansion turns out to have an extremely small radius of convergence. Density profiles near a hard wall are also very accurately described by the corresponding mean-field free-energy functional. The binary version of the model exhibits a spinodal instability against de-mixing at high densities. Possible implications for semi-dilute polymer solutions are discussed.Comment: 13 pages, 2 columns, ReVTeX epsfig,multicol,amssym, 15 figures; submitted to Phys. Rev. E (change: important reference added

    Monopole Condensation and Dimensional Transmutation in SU(2) QCD

    Full text link
    We resolve the controversy on the stability of the monopole condensation in the one-loop effective action of SU(2) QCD by calculating the imaginary part of the effective action with two different methods at one-loop order. Our result confirms that the effective action for the magnetic background has no imaginary part but the one for the electric background has a negative imaginary part. This assures that the monopole condensation is indeed stable, but the electric background becomes unstable due to the pair-annihilation of gluons.Comment: 13 pages, 2 figure
    corecore