53 research outputs found

    Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    Get PDF
    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0–275 mg coal l−1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l−1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems

    Toxicity thresholds of nine herbicides to coral symbionts (Symbiodiniaceae)

    Get PDF
    Over 30 herbicides have been detected in catchments and waters of the Great Barrier Reef (GBR) and their toxicity to key tropical species, including the coral endosymbiotic algae Symbiodiniaceae, is not generally considered in current water quality guideline values (WQGVs). Mutualistic symbionts of the family Symbiodiniaceae are essential for the survival of scleractinian corals. We tested the effects of nine GBR-relevant herbicides on photosynthetic efficiency (Delta F/F-m ') and specific growth rate (SGR) over 14 days of cultured coral endosymbiont Cladocopium goreaui (formerly Symbiodinium clade C1). All seven Photosystem II (PSII) herbicides tested inhibited Delta F/F-m ' and SGR, with toxicity thresholds for SGR ranging between 2.75 and 320 mu g L-1 (no effect concentration) and 2.54-257 mu g L-1 (EC10). There was a strong correlation between EC(50)s for Delta F/F-m ' and SGR for all PSII herbicides indicating that inhibition of Delta F/F-m ' can be considered a biologically relevant toxicity endpoint for PSII herbicides to this species. The non-PSII herbicides haloxyfop and imazapic did not affect Delta F/F-m ' or SGR at the highest concentrations tested. The inclusion of this toxicity data for Symbiodiniaceae will contribute to improving WQGVs to adequately inform risk assessments and the management of herbicides in tropical marine ecosystems

    Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    Get PDF
    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue

    Phototoxic effects of two common marine fuels on the settlement success of the coral Acropora tenuis

    Get PDF
    Coral reefs are at risk of exposure to petroleum hydrocarbons from shipping spills and uncontrolled discharges during extraction. The toxicity of petroleum hydrocarbons can substantially increase in the presence of ultraviolet radiation (UVR), therefore spills in shallow coral reef environments may be particularly hazardous to reef species. Here we investigated the sensitivity of coral larvae (Acropora tenuis) to dissolved hydrocarbons from heavy fuel oil (HFO) and diesel in the absence and presence of UVR. Larval settlement success decreased with increasing concentrations of dissolved HFO, and co-exposure to UVR doubled the toxicity: 50% effect concentrations (EC50) decreased from 96 (−UVR) to 51 (+UVR) total petroleum aromatic hydrocarbons (TPAH). Toxic thresholds for HFO were similar to concentrations reported during marine spills: EC10s of 24 (−UVR) and 15 (+UVR) µg l−1. While less toxic, diesel also reduced settlement and exhibited phototoxicity: EC10s of 122 (+UVR) and 302 (−UVR) µg l−1. This study demonstrates that the presence of UVR increases the hazard posed by oil pollution to tropical, shallow-water coral reefs. Further research on the effects of oils in the presence of UVR is needed to improve the environmental relevance of risk assessments and ensure appropriate protection for shallow reef environments against oil pollution

    Herbicides increase the vulnerability of corals to rising sea surface temperature

    No full text
    In order to examine the potential interactive pressures of local pollution and global climate change, we exposed corals and crustose coralline algae (CCA) to three agricultural photosystem II (PSII) herbicides at four temperatures (26–32°C). The coral Acropora millepora was 3‐ to 10‐fold more sensitive to the three herbicides than the CCA Neogoniolithon fosliei. While the photosynthesis of CCA was not affected by the herbicide concentrations used (< 1 μg L−1), temperatures of 31°C and 32°C alone significantly inhibited photosynthetic efficiency (ΔF:F′m) and caused chronic photoinhibition (reduced Fv:Fm) and substantial bleaching. Environmentally relevant concentrations of each herbicide increased the negative effects of thermal stress on coral at 31°C and 32°C. Mixed model analyses of variance showed that the effects of elevated sea surface temperatures (SST) and herbicide on photosynthetic efficiency of coral symbionts were additive. Furthermore, the effect of either diuron or atrazine in combination with higher SST (31°C and 32°C) on chronic photoinhibition was distinctly greater than additive (synergistic). Reducing the herbicide concentration by 1 μg L−1 diuron above 30°C would protect photosynthetic efficiency by the equivalent of 1.8°C and reduce chronic photoinhibition by the equivalent of a 1°C reduction. Reduced water quality increases the vulnerability of corals to elevated SSTs, and effective management of local water quality can reduce negative effects of global stressors such as elevated SST.N/

    Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    Get PDF
    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fₘ') by 50% at concentrations ranging from 3.5 μg l⁻¹ (ametryn) to 132 μg l⁻¹ (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fₘ'

    Bacillus insecticides are not acutely harmful to corals and sponges

    No full text
    Bacillus thuringiensis is a Gram-positive bacterium that produces crystalline endotoxins and is widely considered an environmentally safe insecticide to control mosquitoes and a number of agriculture pests. Bacteria closely related to B. thuringiensis have recently been discovered in association with diseased sponges, which has raised concerns that Bacillus insecticides may be harmfulopical marine invertebrates. We exposed coral larvae and juvenile corals to the insecticides VectoBac® G (containing B. thuringiensis israelensis) and VectoLex® G (containing B. sphaericus). VectoBac G and VectoLex G had no effect on the survival and metamorphosis of Acropora millepora and A. tenuis larvae at very high concentrations (5000 μ gl). The juvenile corals of the same species were also unaffected after 4 sequential 48 h exposures to B. thuringiensis israelensis and B. sphaericus at different stages of development. Adult corals (A. millepora) and sponges (Ianthella basta) wereposed to a single 6 h pulse of 1000 μ gl VectoBac G. Although B. thuringiensis israelensis as detected in the seawater using denaturing gradient gel electrophoresis, it was not detected in association with the corals or sponges. No evidence of coral or sponge disease was observed during the following 2 wk. These results indicate that insecticides containing endotoxin-producing Bacillus spp. are unlikely to be acutely pathogenic to corals and sponges. However, the effect on most tropical marine invertebrates remain untested and the risks of seed populations of alien Bacillus becoming established on reefs and horizontal transfer of toxin genes to native bacteria also need to be addressed

    Toxicity thresholds of three insecticides and two fungicides to larvae of the coral Acropora tenuis

    No full text
    Tropical marine ecosystems, such as coral reefs, face several threats to their health and resilience, including poor water quality. Previous studies on the risks posed by pesticides have focused on five priority herbicides; however, as the number of pesticides applied in coastal agriculture increases, a suite of ‘alternative’ pesticides is being detected in tropical nearshore waters. To improve our understanding of the risks posed by alternative pesticides to tropical marine organisms, the effects of three insecticides (diazinon, fipronil, imidacloprid) and two fungicides (chlorothalonil, propiconazole) were tested on larval metamorphosis of the coral Acropora tenuis. A. tenuis larvae were affected by all five pesticides and the reference toxicant copper. The no effect concentration (NEC) and the 10% and 50% effect concentrations (EC10 and EC50, respectively) for larval metamorphosis were estimated from concentration-response curves after 48 h exposure. The NEC, EC10 and EC50−1 (in µg L), respectively, of each pesticide were as follows: chlorothalonil (2.4, 2.8, 6.0); fipronil (12.3, 13.9, 29.1); diazinon (38.0, 40.8, 54.7); imidacloprid (263, 273, 347); and propiconazole (269, 330, 1008). These toxicity thresholds are higher than reported concentrations in monitoring programs; however, these data will contribute to improving water quality guideline values, which inform the total risk assessments posed by complex contaminant mixtures to which these pesticides contribute

    Toxicity of ten herbicides to the tropical marine microalgae Rhodomonas salina

    Get PDF
    Herbicide contamination of nearshore tropical marine ecosystems is widespread and persistent; however, risks posed by most 'alternative' herbicides to tropical marine microalgae remain poorly understood. Experimental exposures of the important but understudied microalgae Rhodomonas salina to seven individual Photosystem II (PSII) inhibitor\ua0herbicides (diuron, metribuzin, hexazinone, tebuthiuron, bromacil, simazine, propazine) led to inhibition of effective quantum yield (ΔF/F') and subsequent reductions in specific growth rates (SGR). The concentrations which reduced ΔF/F' by 50% (EC) ranged from 1.71-59.2 µg L, while the ECs for SGR were 4-times higher, ranging from 6.27-188 µg L. Inhibition of ΔF/F' indicated reduced photosynthetic capacity, and this correlated linearly with reduced SGR (R = 0.89), supporting the application of ∆F/F' inhibition as a robust and sensitive indicator of sub-lethal toxicity of PSII inhibitors for this microalga. The three non-PSII inhibitor herbicides (imazapic, haloxyfop and 2,4-Dichlorophenoxyacetic acid (2,4-D)) caused low or no toxic responses to the function of the PSII or growth at the highest concentrations tested suggesting these herbicides pose little risk to R. salina. This study highlights the suitability of including R. salina in future species sensitivity distributions (SSDs) to support water quality guideline development for the management of herbicide contamination in tropical marine ecosystems
    corecore