8 research outputs found

    Nuclear immobilization of DsRed1 tagged proteins: A novel tool for studying DNA–protein interactions?

    Get PDF
    AbstractDsRed1 is a red fluorescent protein that can be used as a fusion partner with other proteins to determine their subcellular localization, similarly to the popular green fluorescent proteins (GFP). Here, we report that fusion of DsRed1 to estrogen receptor α (ERα) renders the transcription factor immobile within the nucleus. Furthermore, we show that the immobilization is dependent on DNA interaction and that the binding to the DNA can be direct as well as indirect for DsRed to immobilize with its fusion partners. This observation could provide a new tool to be used for the identification of target genes containing low affinity binding sites for several transcription factors including ERα. In addition, it could be employed for studies on protein–DNA interactions as well as protein–protein interactions during protein complex formation on chromatin in the event of transcription initiation and regulation

    Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies

    Get PDF
    The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to harvest these SVF cells and give them back to the patient within a single surgical procedure, thereby avoiding lengthy and costly in vitro culturing steps. However, this requires SVF-isolates to contain sufficient ASCs capable of differentiating into the desired cell lineage. We have investigated whether the yield and function of ASCs are affected by the anatomical sites most frequently used for harvesting adipose tissue: the abdomen and hip/thigh region. The frequency of ASCs in the SVF of adipose tissue from the abdomen and hip/thigh region was determined in limiting dilution and colony-forming unit (CFU) assays. The capacity of these ASCs to differentiate into the chondrogenic and osteogenic pathways was investigated by quantitative real-time polymerase chain reaction and (immuno)histochemistry. A significant difference (P = 0.0009) was seen in ASC frequency but not in the absolute number of nucleated cells between adipose tissue harvested from the abdomen (5.1 ± 1.1%, mean ± SEM) and hip/thigh region (1.2 ± 0.7%). However, within the CFUs derived from both tissues, the frequency of CFUs having osteogenic differentiation potential was the same. When cultured, homogeneous cell populations were obtained with similar growth kinetics and phenotype. No differences were detected in differentiation capacity between ASCs from both tissue-harvesting sites. We conclude that the yield of ASCs, but not the total amount of nucleated cells per volume or the ASC proliferation and differentiation capacities, are dependent on the tissue-harvesting site. The abdomen seems to be preferable to the hip/thigh region for harvesting adipose tissue, in particular when considering SVF cells for stem-cell-based therapies in one-step surgical procedures for skeletal tissue engineering

    A single social defeat transiently suppresses the anti-viral immune response in mice

    No full text
    Most of the studies dealing with effects of stress on anti-viral immunity have been carried out with stressors that are of long duration and that bear little relationship to the nature of the species. In this paper, we investigated the effect of a stressor mimicking real-life situations more closely, being social defeat of male mice, on anti-viral immunity. A single social defeat was applied at 3 or 6 days after inoculation with pseudorabies virus, a herpes virus. It appeared that lymph node cellularity, virus specific IL-2 and IFN-gamma production and lymphocyte proliferation were suppressed at 1 day after defeat, but these parameters restored to control values quickly thereafter. We conclude that the stress of a single social defeat evokes a transient immune suppression, which might have consequences if a pathogenic or lethal virus is involved.

    Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells

    No full text
    Adipose tissue contains a stromal vascular fraction (SVF) that is a rich source of adipose tissue-derived stem cells (ASCs). ASCs are multipotent and in vitro-expanded ASCs have the capacity to differentiate, into amongst others, adipocytes, chondrocytes, osteoblasts, and myocytes. For tissue engineering purposes, however, it would be advantageous to use the whole SVF, which can be transplanted without further in vitro selection or expansion steps. Because little is known about the freshly isolated ASCs in the SVF, we phenotypically characterized human freshly isolated ASCs, using flow cytometry. In addition, we investigated whether freshly isolated ASCs have functional properties comparable to cultured ASCs. For this, the differentiation potential of both freshly isolated ASCs and cultured ASCs into the osteogenic pathway was analyzed. Freshly isolated ASCs slightly differed in immunophenotype from cultured ASCs. Contrary to cultured ASCs, freshly isolated ASCs were shown to be highly positive for CD34, and positive for CD117 and HLA-DR. On the other hand, expression of CD105 and especially CD166 on the freshly isolated ASCs was relatively low. After osteogenic stimulation of freshly isolated ASCs, both Runx-2 and Col1aI gene expression were significantly increased (p < 0.05). However, there was a difference in the kinetics of gene expression between freshly isolated and cultured ASCs and also between the different SVF isolates tested. There was no difference in alkaline phosphatase activity between freshly isolated ASCs and cultured ASCs. In addition, freshly isolated ASCs stained positive for osteonectin and showed matrix mineralization. We conclude that although there are minor differences in phenotype and kinetics of differentiation between freshly isolated ASCs and cultured ASCs, the use of freshly isolated ASCs for tissue engineering purposes involving bone repair is potentially applicable

    Chemokine-Mediated Migration of Skin-Derived Stem Cells: Predominant Role for CCL5/RANTES

    Get PDF
    The ability of stem cells to self-renew as well as their multilineage differentiation potential makes them ideal candidates for skin regeneration strategies. Mesenchymal stem cells residing in human adult dermis, in contrast to adipose tissue, have not yet been described. The objective of this study was to determine the stemness and chemokine-mediated homing potential of dermal stromal cells (DSC) and to compare this with adipose stem cells (ASC). DSC have a less stellate form than ASC, confirming that DSC and ASC are two different types of mesenchymal cell populations. However, DSC display a mesenchymal stem cell phenotype (CD31−, CD34+, CD45−, CD54+, CD90+, CD105+, and CD166+ similar to ASC and are also multipotent in their ability to differentiate into adipocytes, chondrocytes, and osteoblasts. Both ASC and DSC display a similar set of chemokine receptors (CCR3, CCR4, CCR6, CCR10, CXCR1, and CXCR2). Several ligands for these receptors, with CCL5/RANTES being the most potent, can induce migration of ASC and DSC in an in vitro wound-healing assay. Taken together, these results show that a population of mesenchymal stem cells resides in the dermis of human adult skin and these dermal-derived stem cells have a phenotypic and chemokine-mediated homing potential similar to adipose stem cells, which to our knowledge is previously unreported
    corecore