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This study compares mesenchymal cells isolated from excised burn wound eschar with adipose-derived stem
cells (ASCs) and dermal fibroblasts in their ability to conform to the requirements for multipotent mesenchy-
mal stem cells (MSCs). A population of multipotent stem cells in burn eschar could be an interesting
resource for tissue engineering approaches to heal burn wounds. Cells from burn eschar, dermis, and adipose
tissue were assessed for relevant CD marker profiles using flow cytometry and for their trilineage differentia-
tion ability in adipogenic, osteogenic, and chondrogenic conditions. Although the different cell types did not
differ significantly in their CD marker expression, the eschar-derived cells and ASCs readily differentiated
into adipocytes, osteoblasts, and chondrocytes, while dermal fibroblasts only exhibited some chondrogenic
potential. We conclude that the eschar-derived mesenchymal cells represent a population of multipotent stem
cells. The origin of the cells from burn eschar remains unclear, but it is likely they represent a population
of adult stem cells mobilized from other parts of the body in response to the burn injury. Their resemblance
to ASCs could also be cause for speculation that in deep burns the subcutaneous adipose tissue might be an
important stem cell source for the healing wound.
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INTRODUCTION enormous number of different scaffold materials developed
recently, fundamental knowledge about exact composition
and architecture necessary for skin tissue engineering isDue to the progression in burn wound care of recent

decades the percentage of patients surviving their burn still scarce. Hence, clinical improvements on the conven-
tional split skin graft treatment are limited (32).injury has greatly increased. The increased survival rate

has also increased the number of people who are left The choice of cells for skin tissue engineering is also
vital to the outcome of the wound healing process.with burn scars that are often cause for great functional

problems due to contractures. Also their disfigurement Autologous healthy skin cells would obviously be pref-
erable and some significant results have been achievedcan cause psychosocial problems (33). These develop-

ments have induced new research into wound healing in supplying epidermal cells to wounds (5,35). Providing
dermal cells for tissue engineering is more problematic,with a focus on the prevention/reduction of scar forma-

tion. The most promising approach to these problems is as conventional split skin grafts contain only a small
dermal component. This obviously adds to the moretissue engineering, which aims at rebuilding the lost

skin. This is achieved by applying differentiated skin well-known problems of skin grafting, namely that the
creation of additional wounds as donor sites is not idealcells or stem cells to a scaffolding material that will

induce those cells to organize into a normal skin config- as it is associated with pain and morbidity; furthermore,
in extensive burns donor sites might be limited.uration. Two major problems with the tissue engineering

approach are the scaffold design and the source of cells. The discovery of adult stem cells in different tissues in
recent years has provided researchers with an alternativeThe scaffold should create a microenvironment that will

guide the cells towards tissue regeneration. Despite the source of cells for tissue engineering purposes without

Received December 15. 2010; final acceptance May 15, 2011. Online prepub date: September 22, 2011.
Address correspondence to Madga M. W. Ulrich, Association of Dutch Burn Centres, Postbus 1015, 1940 EA Beverwijk, The Netherlands. Tel:
+31 251275506; Fax: 0031 251264948; E-mail: mulrich@burns.nl

933



934 VAN DER VEEN ET AL.

having to disturb the patients remaining healthy skin. It healthy donors during abdominal dermolipectomy. A
split skin biopsy 0.3 mm in thickness was removedhas been shown that mesenchymal stem cells (MSCs)

isolated from bone marrow can be used to stimulate using a dermatome (Aesculap AG & Co. KG, Tuttlingen,
Germany). Subcutaneous fat samples were cut from thewound healing (9,11,36). However, the harvesting of

stem cells from bone marrow is a painful procedure that material using sterile scissors. Eschar material was
obtained from patients undergoing burn treatment in theyields only limited amounts of multipotent cells. Recently

attention has turned more towards stem cells isolated burn center of the Red Cross Hospital Beverwijk,
Netherlands. Eschar tissue was removed between 11 andfrom subcutaneous fat, which is far more abundant, eas-

ily accessible, and yields higher numbers of multipotent 26 days post-burn injury. All tissue was obtained in
accordance with the guidelines of the Red Cross Hospi-cells than bone marrow (39). These adipose-derived

stem cells (ASCs) have been tested in a variety of in tal, Beverwijk and according to the code of proper use
of human tissue formulated by the federation of Dutchvitro and in vivo models resembling various injuries.

They were shown to improve the healing process com- medical scientific societies (FMWV/FDMSS).
Cells were isolated from the different types of tissuepared to control treatments (21). With regard to wound

healing, experiments have mainly focused on the wound as described previously (31). Dermis and epidermis
were separated enzymatically by incubating in a salineclosure time in rodents, where it was shown that ASCs

were able to improve the rate of wound closure (1,14,24). solution with 0.25% dispase II (Boehringer Mannheim,
Germany) at 37°C for 1 h. Dermal, fat, and eschar tis-Burn eschar is the nonviable tissue that remains after

a burn injury. This tissue is essentially dead and surgical sues were washed, weighed, and minced with sterile
scissors. Materials were then incubated for 1.5–3 h in 2removal of the eschar is known to decrease the incidence

of infection, reduce the inflammatory response, and ml of saline containing 0.25% dispase II/collagenase A
(Boehringer, Mannheim, Germany) for every gram ofimprove the outcome of the wound healing process

(4,12). Our laboratory has isolated mesenchymal cells tissue at 37°C under continuous agitation. The resulting
suspension was passed through a filter chamberfrom eschar tissue after debridement of a burn wound

and proposed to use this cell population for tissue engi- (Beldico, Duiven, Netherlands) and washed with 1%
fetal calf serum (FCS; Hyclone, Logan, UT) in phos-neering purposes (34). Our research into these eschar-

derived mesenchymal cells revealed that they were phate-buffered saline (PBS; Gibco, Pastley, UK). Cells
were pelleted, suspended in fibroblast culture mediumhighly similar to mesenchymal cells derived from subcu-

taneous fat in both α-smooth muscle actin (α-SMA) (FBM) [DMEM with 10% FCS, 1 mM L-glutamine, 100
µg/ml streptomycin, and 100 IU/ml penicillin (Gibco,expression and their ability to contract collagen scaf-

folds in vitro. Also fluorescence-activated cell sorting Pastley UK)] passed through a 0.7-µm cell strainer
(Fischer, Landsmeer, Netherlands), pelleted again, and(FACS) analysis did not reveal differences between the

two populations (31). The mesenchymal cells derived seeded at approximately 20,000–30,000 cells/cm2. One
day after isolation the cells were washed with PBS andfrom subcutaneous fat, described in the latter article,

were later identified as stem cells (39). We suspect that fresh culture medium was added. Cell passage was per-
formed using trypsin (Gibco, Pastley, UK) just prior tothe mesenchymal cells isolated from burn eschar might

actually also be MSCs that have migrated into the reaching full confluence.
In total 13 cell populations isolated from dermis (age:wound area from the subcutaneous fat or another source

of MSCs after burn injury. 26–51 years, mean: 38 years), 9 from adipose tissue
(age: 33–51 years, mean: 42 years), and 12 from escharIn this study we investigated whether eschar-derived

cells fulfill all the criteria, formulated by the Interna- tissue [age: 8 months–79 years, mean: 38 years, total
body surface area (TBSA): 0.5–19%, mean: 4%, eschartional Society for Cellular Therapy (ISCT) for multipo-

tent mesenchymal stromal cells. We assessed the excision post burn: 11–26 days, mean: 14 days] were
used in this study.differentiation potential of mesenchymal stromal cells

isolated from normal dermis, adipose, and burn eschar For flow cytometry, the following number of popula-
tions were analyzed: dermis (n = 10), adipose (n = 8),tissue and examined these cell types for an array of clus-

ter of differentiation (CD) markers that have been postu- eschar (n = 7). For general trilineage differentiation: der-
mis (n = 3), adipose (n = 4), eschar (n = 4). For micromasslated to be indicative of multipotent mesenchymal

stromal cells (8). culture: dermis (n = 3), adipose (n = 3), eschar (n = 4).

MATERIALS AND METHODS Flow Cytometry
Tissue Handling and Cell Culture After three passages cells were labeled with fluores-

cently labeled specific antibodies (Table 1) for flowMesenchymal cells derived from dermis and subcuta-
neous fat were isolated from tissue obtained from cytometry. Cells were trypsinized and washed in facs
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Table 1. Antibodies Used in Flow Cytometry

Target Type Clone Label Producer Dilution

CD90 mouse IgG1 5,00E+10 FITC Biolegend 1:10
CD105 mouse IgG1 SN6 FITC ABDserotec 1:25
CD73 mouse IgG1 AD2 LL-FITC BD Pharmingen 1:50
CD271 mouse IgG1 ME20.4-1.H4 FITC Miltentyi Biotec 1:50
CD34 mouse IgG1 4H11 AF647 Biolegend 1:50
CD31 mouse IgG1 WM-59 R-PE BD Pharmingen 1:10
CD45 mouse IgG1 HI30 FITC Biolegend 1:10
CD14 mouse IgG1 2D-15C/FMC-32 FITC Chemicon 1:50
CD79a mouse IgG1 ZL7.4 FITC Chemicon 1:50
HLA-DR mouse IgG2a L243 FITC Biolegend 1:50

CD, cluster of differentiation; FITC, fluorescein isothiocyanate; LL-FITC, Lightining-Link FITC con-
jugation kit (Innova Biosciences); PE, phycoerythrin, HLA, human leukocyte antigen.

buffer (0.1% bovine serum albumin; Sigma-Aldrich, St. biotec, Bergisch Gladbach, Germany) and FBM. Medium
was changed twice a week, and the resulting cell massLouis, MO) and 0.05% sodium-azide in PBS). Samples

were then incubated with the antibodies in Table 1 for was fixed in 4% formalin for 24 h after 3 weeks of cul-
ture, dehydrated, and embedded in paraffin for histologi-30 min at 2–8°C. Afterwards cells were washed with

FACS buffer twice and stored in FACS buffer until being cal examination.
measured on a Facscalibur flow cytometer (BD Biosci-

Staining for Differentiated Cellsences, San Jose, CA), within 24 h after labeling. Cells
Staining for differentiated cells was adopted fromwere kept on ice or at 2–8°C during the whole procedure.

earlier protocols with some minor adjustments (30,39).CD73 antibody was conjugated with fluorescein iso-
thiocyanate (FITC) using the lightning-link conjugation Osteogenic Differentiation: Alkaline Phosphatase.

Slides were incubated with New Fuchsin (Dako, Glostrup,kit (Innova biosciences, Cambridge, UK) in accordance
with the manufacturer’s specifications. Data analysis Denmark) for 30 min at 37°C. Staining was stopped by

adding FBM and cells were fixed with 4% formalin atwas performed with FCS express 3 software (De Novo
software, Los Angeles, CA). The percentage of positive 4°C for 30 min. Slides were rinsed with PBS and coun-

terstained with hematoxylin.cells in each sample was calculated by Overton histo-
gram subtraction (22). Osteogenic Differentiation: Von Kossa. Cells were

fixed for 1 h in 4% formalin at 4°C and then incubated
Differentiation Assay in a 1% silver nitrate solution under ultraviolet light for

After four passages cells were used to assess their 1 h. Afterwards unreacted silver was removed by incu-
differentiation potential in the adipogenic, chondrogenic, bating in 5% sodium thiosulfate for 5 min. Slides were
and osteogenic lineages. Cells were trypsinized at counterstained with eosin.
approximately 90% confluence and seeded into Lab-Tek Chondrogenic Differentiation: Alcian Blue (pH 1.0).
chamberslides (Fischer, Landsmeer, Netherlands) (5,000 Cells were fixed for 15 min in 4% formalin at room
cells/cm2). Cells were cultured in standard fibroblast cul- temperature and incubated for 30 min with 1% Alcian
ture medium until almost reaching full confluence; the blue (8 GX Sigma-Aldrich, St. Louis, MO) in 0.1 M
culture medium was then replaced by the appropriate HCl (pH 1.0). Slides were counterstained with nuclear
Miltenyi NH differentiation media (Miltenyi biotec, Ber- fast red (Dako, Glostrup, Denmark).
gisch Gladbach, Germany). Cells were maintained in

Adipogenic Differentiation: Oil Red O. Cells werethis medium for 2 weeks (v. Kossa samples for up to 4
fixed for 1 h in 4% formalin with 1% calcium chloride.weeks); medium was changed twice a week.
Slides were then washed in 70% ethanol and incubated
for 30 min in 2% oil red O (Sigma-Aldrich) in 60% 2-Micromass Culture
propanol solution at room temperature. Slides wereChondrogenic differentiation was investigated in
counterstained with hematoxylin.micromass culture. Cells were placed in centrifuge tubes

Chondrogenic Differentiation: Collagen 2a1 RT-PCR.at a density of 0.3 × 106 cells/tube and centrifuged at
350 × g for 5 min. Cells were placed in culture as a pel- RNA Preparation. Cultures were prepared from dermis

(n = 3), adipose (n = 3), and eschar cells (n = 3) culturedlet in chondrogenic differentiation medium (Miltenyi
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FACING PAGE

Figure 1. Flow cytometry histograms for relevant cluster of differentiation (CD) markers. Control histograms in black and sample
histograms in red. (A) Representative flow cytometry histograms for adipose-derived stem cells (ASCs). (B) Variation of CD34
expression between different ASCs samples. (C) Representative flow cytometry histograms for eschar-derived cells. (D) Variation
of CD34 expression between different eschar samples.

in chondrogenic differentiation medium [DMEM, 1% definitions. They are positive for CD90, CD105, and
CD73 and negative for CD31, CD45, CD14, CD79a,FCS, 6.25 µg/ml insulin, 10 ng/ml transforming growth

factor-β1 (TGF-β1), 50 nM ascorbate-2-phosphate, 1% and human leukocyte antigen (HLA)-DR. However, a
small percentage of cells was found to express CD34.antibiotics, as described in Zuk et al. (39)]. RNA was

isolated using TRIzol reagent (Invitrogen Life Technol- This resembled a small shift of the population and not a
clearly positive subpopulation of cells. Differences inogies, Breda, The Netherlands) according to the manu-

facturer’s instructions. CD34 expression did not seem to be correlated with
donor age, time between burn, and eschar removal orReal-Time RT-PCR Assays. RNA (500 ng) was reverse
total body surface area (TBSA).transcribed using the QIAGEN QuantiTect reverse

Table 2 presents the mean positive percentagestranscription kit according to the manufacturer’s instruc-
calculated by Overton histogram subtraction for eachtions. The resulting cDNA was diluted to 100-µl and 5-
CD marker.µl samples, which were used for amplification in PCR

Figure 1A–D shows representative histogram profilesreaction.
of ASCs and eschar-derived cells as well as examplesReal-time RT-PCR was performed using the iQ
of variation in CD34 expression between samples of theSYBRgreen Supermix (Bio-Rad, Veenendaal, The Neth-
same cell type.erlands). cDNA was amplified using specific collagen

2a1 primers (forward: GGAGCAGCAAGAGCAAG
GAGAAG; reverse: TGGACAGCAGGCGTAGGAAGG)

Differentiationat a concentration of 0.40 µM, in an iCycler iQ thermal
Differentiation was assessed through four differentcycler (Bio-Rad). After activating the DNA polymerase

stains. Alcian blue (pH 1.0) stains highly sulfated muco-by incubation for 2 min at 95°C, 40 cycles of amplifica-
substances, which are one of the main components oftion (95°C for 30 s and 55°C for 60 s) were performed.
cartilage and are used to demonstrate the presence ofFluorescence was monitored during every thermal cycle
chondrocytes. Alkaline phosphatase is usually found inat the 55°C annealing step. After PCR, the baseline sub-
liver or bone tissue and used along von Kossa staining totraction method was used to determine the threshold

cycle.
Data are expressed as ratios between target mRNA

and housekeeping genes β2-microglobulin (forward: Table 2. Flow Cytometry Results Expressed as the Mean
GGCATTCCTGAAGCTGAC; reverse: ATGTCGGAT Percentage of Positive Cells Followed by the SD
GGATGAAACC) and YWHAZ (tyrosine 3-monooxy-

% Positive Dermal ASC Eschargenase/tryptophan 5-monooxygenase activation protein,
zeta polypeptide; primers forward: AGCAGAGAGCA CD90 100 (0.3) 99 (0.9) 100 (0.5)
AAGTCTTC; reverse: GCTTCTTGGTATGCTTGTTG). CD105 96 (5.6) 91 (9.1) 95 (9.5)

CD73 99 (1.5) 93 (8.3) 98 (4.2)Statistical Analysis
CD31 1 (0.8) 1 (0.8) 1 (1.6)Data were analyzed by SPSS software version 16.0.
CD34 20 (14.7) 42 (15.4) 21 (13.4)

Expression is presented relative to the control condition, CD45 1 (2.2) 1 (1.3) 1 (1.1)
which is set at 1. Data are displayed in box plots. The CD14 11 (3.5) 6 (6.5) 9 (10.1)
boxes represent the middle 50% of the values (25th– CD79a 1 (1) 2 (1.9) 0 (0)
75th percentile), the line in the box represents the HLA-DR 1 (3.5) 0 (0.8) 1 (1.5)
median value, and the bars the highest and lowest value. CD271 1 (1) 2 (1) 1 (0)
Statistical analysis was performed nonparametrically

In the criteria formulated by the International Society for Cellularusing the Mann-Whitney test (p < 0.05). Therapy (ISCT) cells should express CD90, CD105, and CD73 and
not express CD31, CD34, CD45, CD14, CD79a, or HLA-DR. CD34RESULTS
expression was highly varied, but not unexpected for cultured mesen-
chymal cells. CD271 expression is reported to be associated withFlow Cytometry
increased proliferation and differentiation potential; however, we did

Flow cytometry shows that all three cell populations not find any noticeable expression in the cell populations we tested.
ASC, adipose-derived stem cells.used in this study meet the mesenchymal stromal cell
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determine osteogenic differentiation. von Kossa staining identification of ASCs. CD34 expression of ASCs is
even reported to be reversible depending upon culturevisualizes calcium or calcium salts, indicative of bone

formation. Oil red O staining is used to demonstrate the conditions (26).
Although dermal fibroblasts have a similar CDpresence of lipids, indicative of adipocyte differentia-

tion. Mesenchymal cells isolated from adipose tissue marker expression pattern as multipotent mesenchymal
stromal cells, their differentiation potential is limited toand eschar tissue differentiated successfully towards

osteogenic, chondrogenic, and adipogenic lineages. the chondrogenic lineage and this cell population proba-
bly contains only very few stem cells. Other groupsHowever, cells from normal dermis were unable to dif-

ferentiate towards osteogenic and adipogenic lineages. already demonstrated that although FACS analysis per-
formed with the described CD markers show a more orHowever, micromass culture of these cells did produce

some positive Alcian blue staining, indicative of chon- less homogenous cell population, only a small percent-
age of these cells are multipotent stem cells (13). Thesedrogenic differentiation capability.

Figure 2 shows representative images of the different results show that flow cytometry data need to be accom-
panied by trilineage differentiation to determine whetherstains performed to establish differentiation.
a cell population contains MSCs. Further research will

Collagen 2a1 RT-PCR be needed to identify, to date undiscovered, discriminat-
ing markers or a more refined set of known CD markersPCR results are displayed in Figure 3. All three cell

types used in this study expressed significantly more that will successfully identify MSCs without the need
for differentiation experiments.collagen 2 RNA when cultured in chondrogenic differ-

entiation medium compared to FBM control samples MSCs exhibit a contractile phenotype. In studies cul-
turing bone marrow-derived mesenchymal stem cells(Mann-Whitney p < 0.05).
(BMSCs) on dermal scaffolds (25) as well as in our own

DISCUSSION experiences with ASCs and BESCs in such applications
(31), the cells contract the scaffold and are found toIn this article we describe that the mesenchymal cells

isolated from burn eschar meet the criteria of multipo- express αSMA. In human wound healing, contraction
and αSMA expression are associated with myofibroblasttent mesenchymal stromal cells as defined by the ISCT

(8). Cells isolated from dermal tissue showed limited differentiation. These cells are generally associated with
poor wound healing, as they produce excessive anddifferentiation capacity, even though they did match the

required CD marker profile. ASCs did not perform dif- abnormal extracellular matrix (ECM) and are held
responsible for the contractures often seen in hypertro-ferent from the eschar-derived cells in any of the experi-

ments performed in this study. Therefore, we refer to phic scars (6). Even though αSMA expression is not
a definitive marker of myofibroblasts, contraction datathe eschar-derived cells as burn eschar-derived mesen-

chymal stem cells (BESCs). suggest that mesenchymal stromal cells are able to dif-
ferentiate into myofibroblasts. On the other hand,Quirici et al. linked CD271 expression on ASCs to

increased proliferation and differentiation potential (23). αSMA expression could be a property of MSCs unre-
lated to myofibroblast differentiation. Strikingly, allWe included CD271 in our analysis to see if we could

identify a CD271-positive population in our cell pop- multipotent mesenchymal cell populations that seem to
have a high differentiation potential contain high per-ulations. In all three of our cell populations CD271

expression was very low (1–2%) but nevertheless the centages of αSMA-positive cells. Suga et al. also
reported that CD34-negative ASCs displayed greaterdifferentiation potential of the ASCs and BESCs could

be established. CD34 expression varied widely between differentiation potential than CD34-positive ASCs, as
well as increased αSMA RNA expression, suggesting acells isolated from different types of tissue. However,

variation was also observed between different samples link between increased αSMA expression and differenti-
ation potential (26).of cells isolated from the same type of tissue. Changes

in CD34 expression were always observed as shifts in The origin of the BESCs is open to speculation. The
eschar tissues used in this study were excised betweenthe mean fluorescence of the entire cell population and

not as distinct positive and negative populations. 11 and 26 days after the burn injury. This is done to
allow partial thickness burns to heal without the needAccording to the ISCT criteria MSCs should not express

CD34 as this is a hematopoietic cell marker. However, for skin grafts, according to the policy of many Euro-
pean burn centers. Delayed surgical excision combinedthe gradual loss of CD34 expression by ASCs in culture

is an often observed phenomenon (2,20,27,37). A recent with specific topical treatment is a regular treatment
option in the Netherlands. During this period thestudy has established that although CD34 expression is

correlated with differences in proliferation and differen- necrotic tissue or the severely damaged tissue could
attract (stem) cells from the surrounding tissues, throughtiation potential, it is not a marker that is essential to the
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Figure 2. Representative images from differentiation experiments. Columns from left to right show results for dermal fibroblasts,
ASCs, and eschar-derived cells. Rows from top to bottom show Alcian blue staining (sulphated mucosubstances in blue), alkaline
phosphatase (enzymatic activity in red), von Kossa staining (calcium deposits in black), and Oil red O staining (lipid deposits in
red). ASCs and eschar-derived cells clearly differentiate into all three lineages, while dermal fibroblasts only appear to show some
chondrogenic differentiation ability. Scale bars: 100 µm.
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Figure 3. mRNA expression levels of collagen 2a1 in cells after chondrogenic differentiation.
mRNA values are expressed relative to housekeeping genes β2-microglobulin (β2M) and YWHAZ
and presented as box plots. *All cell types used had significantly higher collagen 2a1 expression
when cultured on chondrogenic differentiation medium instead of fibroblast culture medium (FBM;
Mann-Whitney p < 0.05).

chemokine secretion by inflammatory cells, in an closure of the defect, as they possess the myofibroblast
phenotype that plays an important role in ECM produc-attempt to heal the defect. The BESCs could possibly be

ASCs or another adult population of MSCs migrating tion and wound contraction. We have tried to isolate
BESCs from some early excisions that are performed infrom their respective tissues to the site of the burn

injury. Several studies have shown that stem cells from our local burn center, but have been unable to detect
them in reasonable numbers in these eschar samples.bone marrow seem to be able to home to the wound area

and integrate in the regenerated skin, both in the dermis Although we have not determined at what time postburn
BESCs generally appear, this suggests that it might takeand epidermis (10,24,36). Elevated levels of circulating

MSCs have also been detected in the blood of burn vic- some time for them to migrate into the burned tissue. It
is very well possible that the influx of BESCs continuestims (17). However, a recent study has demonstrated

that bone marrow-derived cells probably do not contrib- after excision of the eschar and that these cells will
influence the healing process also after the applicationute to the fibroblast and myofibroblast population of a

healing wound in mice (3). But the subcutaneous adi- of the skin graft. Regardless of the timing of influx of
these cells, we think this finding represents an interest-pose tissue could still be considered a potential source

of multipotent mesenchymal cells, which could play a ing option for novel wound treatment, because it offers
the possibility to isolate the BESCs from a late excisionrole in the healing of deep skin wounds.

Evidence for the involvement of the subcutaneous fat eschar and use them in tissue engineering applications
for burn wounds.in wound healing is provided by the presence of fat

domes in anatomical locations prone to hypertrophic MSCs can only be expected to be beneficial to tissue
regeneration if they differentiate into the locally requiredscarring (18). The role BESCs play in wound healing is

unclear, as is the timing of the influx into the wound phenotype in the wound environment. If the correct sig-
nals from normal skin are absent the application ofarea. It is very likely that these cells contribute to the
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