10 research outputs found

    Physicochemical properties of pectin from Malus domestica 'Falticeni' apple pomace as affected by non-conventional extraction techniques

    Full text link
    [EN] Six non-conventional techniques (microwave-assisted extraction, ultrasound-assisted extraction, enzyme-assisted extraction - with cellulase and Celluclast 1.5L, ultrasound-assisted extraction - heating treatment, and enzyme-assisted extraction - ultrasound treatment) and conventional citric acid extraction were applied to extract pectin from Malus domestica 'Falticeni' apple pomace, and were compared in terms of extraction yields and physicochemical properties of the pectins. Microwave extraction led to the highest extraction yield and the lowest pectin recovery was found for the extraction with Celluclast 1.5L. Pectin samples obtained by microwave extraction showed color parameters comparable to commercial apple and citrus pectin, and had high galacturonic acid content, increased equivalent weight and high degree of esterification and molecular weight. High galacturonic acid content, molecular weight and degree of esterification were also found for pectin extracted by ultrasonication. On the opposite side, enzymatically extracted pectins had high equivalent weight, but lower degree of esterification that classified pectin extracted with cellulase as low-methoxylated pectin. Pectins obtained by ultrasound-assisted extraction - heating treatment and microwave extraction showed thermal properties that were similar to that of commercial pectins. The rheological characterization of pectin samples highlighted the high viscosities of solutions prepared with pectin from the ultrasound- and microwave-assisted extractions, which were correlated with their molecular weight and galacturonic acid content.This work was supported from contract no. 18PFE/16.10.2018 funded by Ministry of Research and Innovation of Romania within Program 1 - Development of national research and development system, Subprogram 1.2 - Institutional Performance -RDI excellence funding projects. The author Mircea Oroian also acknowledge for the financial support of the Romania National Council for Higher Education Funding, CNFIS, project number CNFIS-FDI-2019-0600.Dranca, F.; Vargas, M.; Oroian, M. (2020). Physicochemical properties of pectin from Malus domestica 'Falticeni' apple pomace as affected by non-conventional extraction techniques. Food Hydrocolloids. 100:1-14. https://doi.org/10.1016/j.foodhyd.2019.105383S114100Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., 
 Zeng, X. (2013). Effect of ultrasound on different quality parameters of apple juice. Ultrasonics Sonochemistry, 20(5), 1182-1187. doi:10.1016/j.ultsonch.2013.02.010Alba, K., Laws, A. P., & Kontogiorgos, V. (2015). Isolation and characterization of acetylated LM-pectins extracted from okra pods. Food Hydrocolloids, 43, 726-735. doi:10.1016/j.foodhyd.2014.08.003Bagherian, H., Zokaee Ashtiani, F., Fouladitajar, A., & Mohtashamy, M. (2011). Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing: Process Intensification, 50(11-12), 1237-1243. doi:10.1016/j.cep.2011.08.002Barbieri, S. F., da Costa Amaral, S., Ruthes, A. C., de Oliveira Petkowicz, C. L., Kerkhoven, N. C., da Silva, E. R. A., & Silveira, J. L. M. (2019). Pectins from the pulp of gabiroba (Campomanesia xanthocarpa Berg): Structural characterization and rheological behavior. Carbohydrate Polymers, 214, 250-258. doi:10.1016/j.carbpol.2019.03.045Begum, R., Yusof, Y. A., Aziz, M. G., & Uddin, M. B. (2017). Structural and functional properties of pectin extracted from jackfruit (Artocarpus heterophyllus) waste: Effects of drying. International Journal of Food Properties, 20(sup1), S190-S201. doi:10.1080/10942912.2017.1295054Caffall, K. H., & Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344(14), 1879-1900. doi:10.1016/j.carres.2009.05.021Cameron, R. G., Kim, Y., Galant, A. L., Luzio, G. A., & Tzen, J. T. C. (2015). Pectin homogalacturonans: Nanostructural characterization of methylesterified domains. Food Hydrocolloids, 47, 184-190. doi:10.1016/j.foodhyd.2015.01.036ČernĂĄ, M., Barros, A. S., Nunes, A., Rocha, S. M., Delgadillo, I., Čopı́kovĂĄ, J., & Coimbra, M. A. (2003). Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydrate Polymers, 51(4), 383-389. doi:10.1016/s0144-8617(02)00259-xCho, E.-H., Jung, H.-T., Lee, B.-H., Kim, H.-S., Rhee, J.-K., & Yoo, S.-H. (2019). Green process development for apple-peel pectin production by organic acid extraction. Carbohydrate Polymers, 204, 97-103. doi:10.1016/j.carbpol.2018.09.086Corredig, M., & Wicker, L. (2001). Changes in the molecular weight distribution of three commercial pectins after valve homogenization. Food Hydrocolloids, 15(1), 17-23. doi:10.1016/s0268-005x(00)00044-8Cui, L., Wang, J., Huang, R., Tan, Y., Zhang, F., Zhou, Y., & Sun, L. (2019). Analysis of pectin from Panax ginseng flower buds and their binding activities to galectin-3. International Journal of Biological Macromolecules, 128, 459-467. doi:10.1016/j.ijbiomac.2019.01.129Darvill, A. G., McNeil, M., & Albersheim, P. (1978). Structure of Plant Cell Walls. Plant Physiology, 62(3), 418-422. doi:10.1104/pp.62.3.418Dranca, F., & Oroian, M. (2018). Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Research International, 113, 327-350. doi:10.1016/j.foodres.2018.06.065Dranca, F., & Oroian, M. (2019). Ultrasound-Assisted Extraction of Pectin from Malus domestica ‘Fălticeni’ Apple Pomace. Processes, 7(8), 488. doi:10.3390/pr7080488Einhorn-Stoll, U. (2018). Pectin-water interactions in foods – From powder to gel. Food Hydrocolloids, 78, 109-119. doi:10.1016/j.foodhyd.2017.05.029Einhorn-Stoll, U., & Kunzek, H. (2009). Thermoanalytical characterisation of processing-dependent structural changes and state transitions of citrus pectin. Food Hydrocolloids, 23(1), 40-52. doi:10.1016/j.foodhyd.2007.11.009Fakayode, O. A., & Abobi, K. E. (2018). Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: a response surface approach. Journal of Analytical Science and Technology, 9(1). doi:10.1186/s40543-018-0151-3Fishman, M. L., Chau, H. K., Hoagland, P. D., & Hotchkiss, A. T. (2006). Microwave-assisted extraction of lime pectin. Food Hydrocolloids, 20(8), 1170-1177. doi:10.1016/j.foodhyd.2006.01.002Giacomazza, D., Bulone, D., San Biagio, P. L., Marino, R., & Lapasin, R. (2018). The role of sucrose concentration in self-assembly kinetics of high methoxyl pectin. International Journal of Biological Macromolecules, 112, 1183-1190. doi:10.1016/j.ijbiomac.2018.02.103GĂłmez-Ordóñez, E., JimĂ©nez-Escrig, A., & RupĂ©rez, P. (2012). Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC). Talanta, 93, 153-159. doi:10.1016/j.talanta.2012.01.067Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198, 93-100. doi:10.1016/j.foodchem.2015.11.095GĂŒzel, M., & Akpınar, Ö. (2019). Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food and Bioproducts Processing, 115, 126-133. doi:10.1016/j.fbp.2019.03.009Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621-629. doi:10.1016/j.ijbiomac.2018.12.096Hosseini, S. S., Khodaiyan, F., & Yarmand, M. S. (2016). Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. International Journal of Biological Macromolecules, 82, 920-926. doi:10.1016/j.ijbiomac.2015.11.007Hua, X., Wang, K., Yang, R., Kang, J., & Yang, H. (2015). Edible coatings from sunflower head pectin to reduce lipid uptake in fried potato chips. LWT - Food Science and Technology, 62(2), 1220-1225. doi:10.1016/j.lwt.2015.02.010Jiang, Y., Du, J., Zhang, L., & Li, W. (2018). Properties of pectin extracted from fermented and steeped hawthorn wine pomace: A comparison. Carbohydrate Polymers, 197, 174-182. doi:10.1016/j.carbpol.2018.06.001Kara, D. (2009). Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chemistry, 114(1), 347-354. doi:10.1016/j.foodchem.2008.09.054Kaya, M., Sousa, A. G., CrĂ©peau, M.-J., SĂžrensen, S. O., & Ralet, M.-C. (2014). Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Annals of Botany, 114(6), 1319-1326. doi:10.1093/aob/mcu150Kazemi, M., Khodaiyan, F., & Hosseini, S. S. (2019). Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food Chemistry, 294, 339-346. doi:10.1016/j.foodchem.2019.05.063Kratchanova, M., Pavlova, E., & Panchev, I. (2004). The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydrate Polymers, 56(2), 181-185. doi:10.1016/j.carbpol.2004.01.009Kumar, A., & Chauhan, G. S. (2010). Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydrate Polymers, 82(2), 454-459. doi:10.1016/j.carbpol.2010.05.001Larsen, N., CahĂș, T. B., Isay Saad, S. M., Blennow, A., & Jespersen, L. (2018). The effect of pectins on survival of probiotic Lactobacillus spp. in gastrointestinal juices is related to their structure and physical properties. Food Microbiology, 74, 11-20. doi:10.1016/j.fm.2018.02.015Lewandowska, K., Dąbrowska, A., & Kaczmarek, H. (2012). Rheological properties of pectin, poly(vinyl alcohol) and their blends in aqueous solutions. e-Polymers, 12(1). doi:10.1515/epoly.2012.12.1.160Liew, S. Q., Ngoh, G. C., Yusoff, R., & Teoh, W. H. (2016). Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. International Journal of Biological Macromolecules, 93, 426-435. doi:10.1016/j.ijbiomac.2016.08.065Manrique, G. D., & Lajolo, F. M. (2002). FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology, 25(1), 99-107. doi:10.1016/s0925-5214(01)00160-0Melton, L. D., & Smith, B. G. (2001). Determination of the Uronic Acid Content of Plant Cell Walls Using a Colorimetric Assay. Current Protocols in Food Analytical Chemistry, 00(1). doi:10.1002/0471142913.fae0303s00Mishra, R. K., Datt, M., & Banthia, A. K. (2008). Synthesis and Characterization of Pectin/PVP Hydrogel Membranes for Drug Delivery System. AAPS PharmSciTech, 9(2), 395-403. doi:10.1208/s12249-008-9048-6Morris, V. J., Gromer, A., Kirby, A. R., Bongaerts, R. J. M., & Patrick Gunning, A. (2011). Using AFM and force spectroscopy to determine pectin structure and (bio) functionality. Food Hydrocolloids, 25(2), 230-237. doi:10.1016/j.foodhyd.2009.11.015Mualikrishna, G., & Tharanathan, R. N. (1994). Characterization of pectic polysaccharides from pulse husks. Food Chemistry, 50(1), 87-89. doi:10.1016/0308-8146(94)90098-1MĂŒller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., 
 Sforza, S. (2016). Pectin content and composition from different food waste streams. Food Chemistry, 201, 37-45. doi:10.1016/j.foodchem.2016.01.012Ogutu, F. O., & Mu, T.-H. (2017). Ultrasonic degradation of sweet potato pectin and its antioxidant activity. Ultrasonics Sonochemistry, 38, 726-734. doi:10.1016/j.ultsonch.2016.08.014Padmanabhan, P. A., Kim, D.-S., Pak, D., & Sim, S. J. (2003). Rheology and gelation of water-insoluble dextran from Leuconostoc mesenteroides NRRL B-523. Carbohydrate Polymers, 53(4), 459-468. doi:10.1016/s0144-8617(03)00140-1PagĂĄn, J., & Ibarz, A. (1999). Extraction and rheological properties of pectin from fresh peach pomace. Journal of Food Engineering, 39(2), 193-201. doi:10.1016/s0260-8774(98)00163-0Pancerz, M., Ptaszek, A., SofiƄska, K., Barbasz, J., Szlachcic, P., Kucharek, M., & Ɓukasiewicz, M. (2019). Colligative and hydrodynamic properties of aqueous solutions of pectin from cornelian cherry and commercial apple pectin. Food Hydrocolloids, 89, 406-415. doi:10.1016/j.foodhyd.2018.10.060PEREZ, S. (2003). A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie, 85(1-2), 109-121. doi:10.1016/s0300-9084(03)00053-1Priyangini, F., Walde, S. G., & Chidambaram, R. (2018). Extraction optimization of pectin from cocoa pod husks (Theobroma cacao L.) with ascorbic acid using response surface methodology. Carbohydrate Polymers, 202, 497-503. doi:10.1016/j.carbpol.2018.08.103Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929-967. doi:10.1016/s0031-9422(01)00113-3Rodsamran, P., & Sothornvit, R. (2019). Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method. Food Chemistry, 278, 364-372. doi:10.1016/j.foodchem.2018.11.067Seshadri, R., Weiss, J., Hulbert, G. J., & Mount, J. (2003). Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. Food Hydrocolloids, 17(2), 191-197. doi:10.1016/s0268-005x(02)00051-6THIBAULT, J., DEDREU, R., GERAEDS, C., & ROMBOUTS, F. (1988). Studies on extraction of pectins from citrus peels, apple marks and sugar-beet pulps with arabinanase and galactanase. Carbohydrate Polymers, 9(2), 119-131. doi:10.1016/0144-8617(88)90009-4Urias-Orona, V., RascĂłn-Chu, A., Lizardi-Mendoza, J., Carvajal-MillĂĄn, E., Gardea, A. A., & RamĂ­rez-Wong, B. (2010). A Novel Pectin Material: Extraction, Characterization and Gelling Properties. International Journal of Molecular Sciences, 11(10), 3686-3695. doi:10.3390/ijms11103686Virk, B. S., & Sogi, D. S. (2004). Extraction and Characterization of Pectin from Apple (Malus Pumila. Cv Amri) Peel Waste. International Journal of Food Properties, 7(3), 693-703. doi:10.1081/jfp-200033095Vriesmann, L. C., & Petkowicz, C. L. O. (2013). Highly acetylated pectin from cacao pod husks (Theobroma cacao L.) forms gel. Food Hydrocolloids, 33(1), 58-65. doi:10.1016/j.foodhyd.2013.02.010Wai, W. W., AlKarkhi, A. F. M., & Easa, A. M. (2010). Comparing biosorbent ability of modified citrus and durian rind pectin. Carbohydrate Polymers, 79(3), 584-589. doi:10.1016/j.carbpol.2009.09.018Wang, X., Chen, Q., & LĂŒ, X. (2014). Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids, 38, 129-137. doi:10.1016/j.foodhyd.2013.12.003Wang, M., Huang, B., Fan, C., Zhao, K., Hu, H., Xu, X., 
 Liu, F. (2016). Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid. International Journal of Biological Macromolecules, 91, 794-803. doi:10.1016/j.ijbiomac.2016.06.011Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., 
 Liu, D. (2016). Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, 61, 730-739. doi:10.1016/j.foodhyd.2016.06.019Wang, W., Wu, X., Chantapakul, T., Wang, D., Zhang, S., Ma, X., 
 Liu, D. (2017). Acoustic cavitation assisted extraction of pectin from waste grapefruit peels: A green two-stage approach and its general mechanism. Food Research International, 102, 101-110. doi:10.1016/j.foodres.2017.09.087Wikiera, A., Mika, M., & Grabacka, M. (2015). Multicatalytic enzyme preparations as effective alternative to acid in pectin extraction. Food Hydrocolloids, 44, 156-161. doi:10.1016/j.foodhyd.2014.09.018Wikiera, A., Mika, M., StarzyƄska-Janiszewska, A., & Stodolak, B. (2015). Application of Celluclast 1.5L in apple pectin extraction. Carbohydrate Polymers, 134, 251-257. doi:10.1016/j.carbpol.2015.07.051Wikiera, A., Mika, M., StarzyƄska-Janiszewska, A., & Stodolak, B. (2016). Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydrate Polymers, 142, 199-205. doi:10.1016/j.carbpol.2016.01.063Xu, Y., Zhang, L., Bailina, Y., Ge, Z., Ding, T., Ye, X., & Liu, D. (2014). Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. Journal of Food Engineering, 126, 72-81. doi:10.1016/j.jfoodeng.2013.11.004Yang, J.-S., Mu, T.-H., & Ma, M.-M. (2019). Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization. Food Chemistry, 289, 351-359. doi:10.1016/j.foodchem.2019.03.027Yang, Y., Wang, Z., Hu, D., Xiao, K., & Wu, J.-Y. (2018). Efficient extraction of pectin from sisal waste by combined enzymatic and ultrasonic process. Food Hydrocolloids, 79, 189-196. doi:10.1016/j.foodhyd.2017.11.051Yapo, B., & Koffi, K. (2013). Extraction and Characterization of Highly Gelling Low Methoxy Pectin from Cashew Apple Pomace. Foods, 3(1), 1-12. doi:10.3390/foods3010001Zouambia, Y., Youcef Ettoumi, K., Krea, M., & Moulai-Mostefa, N. (2017). A new approach for pectin extraction: Electromagnetic induction heating. Arabian Journal of Chemistry, 10(4), 480-487. doi:10.1016/j.arabjc.2014.11.01

    Ultrasound-Assisted Extraction of Pectin from Malus domestica ‘Fălticeni’ Apple Pomace

    No full text
    The use of an ultrasonic treatment for the extraction of pectin from Malus domestica ‘Fălticeni’ apple pomace, its effects on extraction yield and galacturonic acid content, and degree of esterification of the extracted pectin were investigated. The optimization of the extraction process showed that the highest yield of 9.183% pectin, with a 98.127 g/100 g galacturonic acid content and 83.202% degree of esterification, was obtained at 100% amplitude, pH of 1.8, SLR of 1:10 g/mL, and 30 min. The pectin obtained in optimal extraction conditions was compared to commercial citrus and apple pectin in terms of chemical composition (determined by FT-IR), thermal behaviour (analyzed by differential scanning calorimetry), rheological properties, and morphological structure (analyzed by scanning electron microscopy). By comparison to commercial citrus and apple pectin samples, the FT-IR analysis of pectin extracted by ultrasound treatment confirmed the high degree of esterification and showed similarity to that of apple pectin (88.526%). It was found that the thermal behaviour of the pectin obtained by ultrasound-assisted extraction was influenced by the narrower distribution of molecular weights and the orderly molecular arrangement, while the rheological properties (high viscosity, G0, and G1) of this sample were influenced by the morphological structure and the galacturonic acid content. The correlation coefficient showed a strong positive relationship between viscosity and galacturonic acid content (r = 0.992**)

    Bee Bread: Physicochemical Characterization and Phenolic Content Extraction Optimization

    No full text
    Beebread or ambrosia is a unique product for humans and bees, which is the result of lactic fermentation on pollen in honeycombs. Bee bread is a rich source of nutrients (proteins, vitamins) and polyphenols (such as flavonoids, flavonols, phenolic acids). This study aimed to characterize bee bread in terms of physicochemical properties: pH, free acidity, glucose, fructose, sucrose, raffinose and melesitose content, total phenolic content (TPC), total flavones content (TFC), fatty acids and individual phenolics (gallic acid, protocatechiuc acid, p-hydroxybenzoic acid, caffeic acid, vanillic acid, chlorogenic acid, p-coumaric acid, rosmarinic acid, myricetin, luteolin, quercetin and kaempferol). The main phenolic compound identified in the bee bread was kaempferol, followed by myricetin and luteolin. The TPC, TFC and extraction yield were optimized in function of ultrasonic amplitude, temperature and time and the suitable conditions for achieving the maximum level were 87.20% amplitude of ultrasonic treatment, 64.70 °C and 23.10 min, respectively for reaching 146.2 mg GAE/L of TPC, 1231.5 mg QE/g of TFC and a 5.72% extraction yield. The most abundant fatty acids were C18:3 (all-cis-9,12,15) octadeca-6,9,15-trienoic acid, followed by C16:1 (9Z)-hexadec-9-enoic acid, C21:0 heneicosanoic acid and C18:2 (all-cis-9,12) (9Z,12Z)-octadeca-9,12-dienoic acid, respectively

    EFFECT OF ACID TYPE AND PARTICLE SIZE ON THE YIELD AND PURITY OF APPLE (MALUS DOMESTICA ‘FĂLTICENI’) POMACE PECTIN

    No full text
    This work proposes the use of Malus domestica ‘Fălticeni’ pomace, resulted from the processing of apples into juice in the geographical area of Fălticeni, Suceava (Romania), as a source for pectin extraction. Pectin was extracted from this plant source by using two extractants - hydrochloric acid and citric acid, separately at pH 2, solid-to-liquid ratio of 1:20, temperature of 90°C, and extraction time of 120 min. Together with acid type, another variable that was varied was the particle size: 200-300 ”m, 125-200 ”m, and <125 ”m. To study the influence of acid type and particle size, pectin was characterized in terms of yield and purity, expressed as uronic acid content. The results showed that acid type and particle size had significant effects on the pectin yield and its uronic acid content. A strong influence of acid type on the extraction yield was recorded by particle sizes of 200-300 ”m and 125-200 ”m, respectively. Regarding the uronic acid content, it was observed that particle sizes of 200-300 ”m determined a good purity of the extracted pectin, independent of acid type, while for particle sizes of 125-200 ”m and <125 ”m, the uronic acid content of pectin was strongly affected by the acid used. The highest pectin yield (21.24%) and uronic acid content (93.90 g/100g) were obtained for citric acid extraction and particle sizes between 125 and 200 ”m

    Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication

    No full text
    The present study aimed to evaluate the physicochemical characteristics of honey (raspberry, mint, rape, sunflower, thyme and polyfloral) produced in Romania. The honey samples were from the 2017 to 2018 harvest and were subjected to melissopalynological analysis, alongside the determination of the following physicochemical parameters: moisture content, pH, free acidity, electrical conductivity (EC), hydroxymethylfurfural (HMF) content, color, total polyphenols content (TPC), flavonoids content (FC), DPPH radical scavenging activity, phenolic acids, flavonols, sugars and organic acids in order to evaluate the usefulness of this parameters for the classification of honey according to botanical origin. The results of the melissopalynological analysis revealed that five types of honey samples had a percentage of pollen grains above the minimum of 45%, which was required in order to classify the samples as monofloral honey. The total polyphenols content reached the maximum value in the case of dark honey such as mint honey, followed by raspberry, thyme and polifloral honey. Fructose, glucose, maltose, sucrose, turanose, trehalose, melesitose, and raffinose were identified and quantified in all samples. Gluconic acid was the main organic acid in the composition of all honey samples. Principal component analysis (PCA) confirmed the possibility of the botanical authentication of honey based on these physicochemical parameters

    Characterization of Romanian Bee Pollen&mdash;An Important Nutritional Source

    No full text
    Bee pollen represents an important bee product, which is produced by mixing flower pollens with nectar honey and bee&rsquo;s salivary substances. It represents an important source of phenolic compounds which can have great importance for importance for prophylaxis of diseases, particularly to prevent cardiovascular and neurodegenerative disorders, those having direct correlation with oxidative damage. The aim of this study was to characterize 24 bee pollen samples in terms of physicochemical parameters, organic acids, total phenolic content, total flavonoid content, individual phenolics compounds, fatty acids, and amino acids from the Nort East region of Romania, which have not been studied until now. The bee pollen can be considered as a high protein source (the mean concentration was 22.31% d.m.) with a high energy value (390.66 kcal/100 g). The total phenolic content ranged between 4.64 and 17.93 mg GAE/g, while the total flavonoid content ranged between 4.90 and 20.45 mg QE/g. The high protein content was observed in Robinia pseudoacacia, the high content of lipids was observed in Robinia pseudoacacia pollen, the high fructose content in Prunus spp. pollen while the high F/G ratio was observed in Pinaceae spp. pollen. The high TPC was observed in Prunus spp. pollen, the high TFC was observed in Robinia pseudoacacia pollen, the high free amino acid content was observed in Pinaceae spp. pollen, and the high content of PUFA was reported in Taraxacum spp. pollen. A total of 16 amino acids (eight essential and eight non-essential amino acids) were quantified in the bee pollen samples analyzed. The total content of the amino acids determined for the bee pollen samples varied between 11.31 &micro;g/mg and 45.99 &micro;g/mg. Our results can indicate that the bee pollen is a rich source of protein, fatty acids, amino acids and bioactive compounds

    Raspberry, Rape, Thyme, Sunflower and Mint Honeys Authentication Using Voltammetric Tongue

    No full text
    The aim of this study was to authenticate five types of Romanian honey (raspberry, rape, thyme, sunflower and mint) using a voltammetric tongue (VE tongue) technique. For the electronic tongue system, six electrodes (silver, gold, platinum, glass, zinc oxide and titanium dioxide) were used. The results of the melissopalynological analysis were supplemented by the data obtained with the electronic voltammetric tongue system. The results were interpreted by means of principal component analysis (PCA) and linear discriminant analysis (LDA). In this way, the usefulness of the working electrodes was compared for determining the botanical origin of the honey samples. The electrodes of titanium dioxide, zinc oxide, and silver were more useful, as the results obtained with these electrodes showed that it was achieved a better classification of honey according to its botanical origin. The comparison of the results of the electronic voltammetric tongue technique with those obtained by melissopalynological analysis showed that the technique was able to accurately classify 92.7% of the original grouped cases. The similarity of results confirmed the ability of the electronic voltammetric tongue technique to perform a rapid characterization of honey samples, which complements its advantages of being an easy-to-use and cheap method of analysis

    Microwave vs. conventional extraction of pectin from Malus domestica 'Falticeni' pomace and its potential use in hydrocolloid-based films

    Full text link
    [EN] Conventional extraction (CE) and microwave-assisted extraction (MAE) were compared in terms of efficiency and quality of pectin in two separate processes aimed to extract pectin from Malus domestica 'Falticeni' apple pomace. A similar extraction yield in a shorter extraction time was observed for the microwave-assisted procedure as compared to CE, while the galacturonic acid content and the degree of esterification of pectin were similar for both methods. Apple pectin extracted from this plant source by both methods had high galacturonic acid content, degree of esterification and molecular weight. Considering the high efficiency of microwave-assisted extraction and the composition of the obtained pectin, microwave-assisted apple pectin extracted under optimal conditions was used to produce edible films in combination with hydroxypropyl methylcellulose (HPMC). Films formulated with pectin from microwave extraction had significant lower oxygen permeability as compared to plasticized pure HPMC films, which makes microwave extracted pectin suitable for film-forming applications in which a good barrier to oxygen is required.This paper was supported by "DECIDE - Development through entrepreneurial education and innovative doctoral and post doctoral research, project code POCU/380/6/13/125031, project co-financed from the European Social Fund through the 2014-2020 Operational Program Human Capital". The author Mircea Oroian also acknowledge for the financial support of the Romania National Council for Higher Education Funding, CNFIS, project number CNFIS-FDI-2020-0615.Dranca, F.; TalĂłn, E.; Vargas, M.; Oroian, M. (2021). Microwave vs. conventional extraction of pectin from Malus domestica 'Falticeni' pomace and its potential use in hydrocolloid-based films. Food Hydrocolloids. 121:1-12. https://doi.org/10.1016/j.foodhyd.2021.107026S11212

    Advanced Characterization of Monofloral Honeys from Romania

    No full text
    Honey’s authenticity is a major concern for producers and consumers, and this prompts research into reliable methods to determine the source of honey (botanical and geographical). This study aimed to find the botanical origin of seven samples of monofloral honey (acacia, thyme, tilia, rape, raspberry, mint and sunflower) based on pollen analysis and identification of the physicochemical characteristics of these types of honey. For these types of honey, the following parameters were determined: color, electrical conductivity, free acidity, moisture content, pH, hydroxymethylfurfural content and sugar content. Alongside pollen analysis, these methods succeeded in classifying the analyzed samples as monofloral honey. Non-destructive methods of analysis such as Fourier transform infrared spectroscopy, the determination of the rheological behavior of honey in the negative domain and the determination of the thermal behavior were also employed to characterize the honey samples. The best differentiation between samples was achieved in the spectral region between 950 and 750 cm−1, which is of interest for carbohydrate analysis in IR spectroscopy. In the negative interval, the viscous and elastic modules intersected at different temperatures, these temperatures being influenced both by the moisture of the analyzed samples and the botanical origin

    Development and Characterization of New Plant-Based Ice Cream Assortments Using Oleogels as Fat Source

    No full text
    The objective of this study was to develop candelilla wax oleogels with hemp seed oil and olive oil and use them as a fat source in the development of new plant-based ice cream assortments. Oleogels were structured with 3 and 9% candelilla wax and characterized by oil-binding capacity, peroxide value and color parameters. The oil-binding capacities of 9% wax oleogels were significantly higher than those of 3% wax oleogels, while peroxide values of oleogels decrease with increasing wax dosage. All oleogel samples are yellow-green due to the pigments present in the oils and candelilla wax. Physicochemical (pH, titratable acidity, soluble solids, fat, protein) and rheological (viscosity and viscoelastic modulus) parameters of plant-based ice cream mixes with oleogels were determined. Also, sensory attributes and texture parameters were investigated. The results showed that titratable acidity and fat content of plant-based ice cream samples increased with increasing wax percentage, while pH, soluble solids and protein values are more influenced by the type of plant milk used. The plant-based ice cream sample with spelt milk, hemp oil and 9% candelilla wax received the highest overall acceptability score. The hardness of the plant-based ice cream samples increased as the percentage of candelilla wax added increased
    corecore