43 research outputs found

    Geometric Modular Action, Wedge Duality and Lorentz Covariance are Equivalent for Generalized Free Fields

    Full text link
    The Tomita-Takesaki modular groups and conjugations for the observable algebras of space-like wedges and the vacuum state are computed for translationally covariant, but possibly not Lorentz covariant, generalized free quantum fields in arbitrary space-time dimension d. It is shown that for d≥4d\geq 4 the condition of geometric modular action (CGMA) of Buchholz, Dreyer, Florig and Summers \cite{BDFS}, Lorentz covariance and wedge duality are all equivalent in these models. The same holds for d=3 if there is a mass gap. For massless fields in d=3, and for d=2 and arbitrary mass, CGMA does not imply Lorentz covariance of the field itself, but only of the maximal local net generated by the field

    Characterizing the Load Deformation Behaviour of Steel Deck Diaphragms

    Get PDF
    Lateral loads flow through a building’s horizontal roof and floor diaphragms before being transferred to the vertical lateral force resisting system (e.g. braced frames, moment frames or shear walls). These diaphragms are therefore a critical structural component in the resistance of lateral loads. A review of the literature shows that a large number of experimental programs have been performed to obtain the in-plane load-deformation behavior of steel deck and concrete on steel deck diaphragms. The tested diaphragm behavior was found to be dependent on a set of factors including loading protocol, fastener type, fastener size and spacing, and more. There does not currently exist a single, unifying review of these diaphragm tests and their relevant results. A research program is being conducted to collect and consolidate the available literature about tested steel deck diaphragms and their results. A database has been created that includes over 450 tested specimens with more than 130 cyclic tests. In addition, an effort is made to characterize diaphragms’ load-deformation response as grouped by sidelap and support fastener type. The test programs and results collected into this database as well as the characterization of diaphragm behavior are discussed in this paper

    Local Operations and Completely Positive Maps in Algebraic Quantum Field Theory

    Full text link
    Einstein introduced the locality principle which states that all physical effect in some finite space-time region does not influence its space-like separated finite region. Recently, in algebraic quantum field theory, R\'{e}dei captured the idea of the locality principle by the notion of operational separability. The operation in operational separability is performed in some finite space-time region, and leaves unchanged the state in its space-like separated finite space-time region. This operation is defined with a completely positive map. In the present paper, we justify using a completely positive map as a local operation in algebraic quantum field theory, and show that this local operation can be approximately written with Kraus operators under the funnel property

    Asymptotic completeness in a class of massless relativistic quantum field theories

    Get PDF
    This paper presents the first examples of massless relativistic quantum field theories which are interacting and asymptotically complete. These two-dimensional theories are obtained by an application of a deformation procedure, introduced recently by Grosse and Lechner, to chiral conformal quantum field theories. The resulting models may not be strictly local, but they contain observables localized in spacelike wedges. It is shown that the scattering theory for waves in two dimensions, due to Buchholz, is still valid under these weaker assumptions. The concepts of interaction and asymptotic completeness, provided by this theory, are adopted in the present investigation.Comment: 15 pages, LaTeX. As appeared in Communications in Mathematical Physic

    Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories

    Get PDF
    Warped convolutions of operators were recently introduced in the algebraic framework of quantum physics as a new constructive tool. It is shown here that these convolutions provide isometric representations of Rieffel's strict deformations of C*-dynamical systems with automorphic actions of R^n, whenever the latter are presented in a covariant representation. Moreover, the device can be used for the deformation of relativistic quantum field theories by adjusting the convolutions to the geometry of Minkowski space. The resulting deformed theories still comply with pertinent physical principles and their Tomita-Takesaki modular data coincide with those of the undeformed theory; but they are in general inequivalent to the undeformed theory and exhibit different physical interpretations.Comment: 34 page

    Remarks on Causality in Relativistic Quantum Field Theory

    Get PDF
    It is shown that the correlations predicted by relativistic quantum field theory in locally normal states between projections in local von Neumann algebras \cA(V_1),\cA(V_2) associated with spacelike separated spacetime regions V1,V2V_1,V_2 have a (Reichenbachian) common cause located in the union of the backward light cones of V1V_1 and V2V_2. Further comments on causality and independence in quantum field theory are made.Comment: 10 pages, Latex, Quantum Structures 2002 Conference Proceedings submission. Minor revision of the order of definitions on p.

    Infraparticles with superselected direction of motion in two-dimensional conformal field theory

    Get PDF
    Particle aspects of two-dimensional conformal field theories are investigated, using methods from algebraic quantum field theory. The results include asymptotic completeness in terms of (counterparts of) Wigner particles in any vacuum representation and the existence of (counterparts of) infraparticles in any charged irreducible product representation of a given chiral conformal field theory. Moreover, an interesting interplay between the infraparticle's direction of motion and the superselection structure is demonstrated in a large class of examples. This phenomenon resembles the electron's momentum superselection expected in quantum electrodynamics.Comment: 34 pages, no figure. The final version is available under Open Access. CC-B

    Core Equivalence for Hierarchic Equilibria.

    No full text
    The standard equivalence result on core and Walras equilibrium allocations uses a non-satiation and an interiority assumption. Konovalov introduced the rejective core for exchange economies with possibly satiated preferences and proved that there, the fuzzy rejective core coincides with the set of dividend equilibria provided an interiority assumption holds.MATHEMATICAL ANALYSIS ; ECONOMICS ; DIVIDENDS

    Computational Aspects of Linear Exchange Economies.

    No full text
    The set of equilibrium prices in linear exchange economies is by Mertens (1996) a convex polyhedral cone (after adding {0}). We give a constructive proof of this fact. From this, we derive a lower semi-continuity property of the equilibrium price correspondence. The set of equilibrium allocations is a closed, convex polyhedron (Bonnisseau, Florig and Jofré 1997b). We give a characterization of this set which allows to compute it.PRICES ; ECONOMIC EQUILIBRIUM ; UTILITY FUNCTIONS
    corecore