3,556 research outputs found

    The dynamics of critical Kauffman networks under asynchronous stochastic update

    Full text link
    We show that the mean number of attractors in a critical Boolean network under asynchronous stochastic update grows like a power law and that the mean size of the attractors increases as a stretched exponential with the system size. This is in strong contrast to the synchronous case, where the number of attractors grows faster than any power law.Comment: submitted to PR

    Next-to-leading order QCD corrections to one hadron-production in polarized pp collisions at RHIC

    Get PDF
    We calculate the next-to-leading order QCD corrections to the spin-dependent cross section for single-inclusive hadron production in hadronic collisions. This process will be soon studied experimentally at RHIC, providing a tool to unveil the polarized gluon distribution Δg\Delta g. We observe a considerably improvement in the perturbative stability for both unpolarized and polarized cross sections. The NLO corrections are found to be non-trivial, resulting in a reduction of the asymmetry.Comment: 8 pages, RevTeX4, 9 figures include

    Resonant and Kondo tunneling through molecular magnets

    Full text link
    Transport through molecular magnets is studied in the regime of strong coupling to the leads. We consider a resonant-tunneling model where the electron spin in a quantum dot or molecule is coupled to an additional local, anisotropic spin via exchange interaction. The two opposite regimes dominated by resonant tunneling and by Kondo transport, respectively, are considered. In the resonant-tunneling regime, the stationary state of the impurity spin is calculated for arbitrarily strong molecule-lead coupling using a master-equation approach, which treats the exchange interaction perturbatively. We find that the characteristic fine structure in the differential conductance persists even if the hybridization energy exceeds thermal energies. Transport in the Kondo regime is studied within a diagrammatic approach. We show that magnetic anisotropy gives rise to a splitting of the Kondo peak at low bias voltages.Comment: 13 pages, 5 figures, version as publishe

    Dynamical multistability in high-finesse micromechanical optical cavities

    Full text link
    We analyze the nonlinear dynamics of a high-finesse optical cavity in which one mirror is mounted on a flexible mechanical element. We find that this system is governed by an array of dynamical attractors, which arise from phase-locking between the mechanical oscillations of the mirror and the ringing of the light intensity in the cavity. We describe an analytical approximation to map out the diagram of attractors in parameter space, derive the slow amplitude dynamics of the system, including thermally activated hopping between different attractors, and suggest a scheme for exploiting the dynamical multistability in the measurement of small displacements.Comment: 5 pages, 4 figure

    Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion

    Full text link
    We present a fully quantum theory describing the cooling of a cantilever coupled via radiation pressure to an illuminated optical cavity. Applying the quantum noise approach to the fluctuations of the radiation pressure force, we derive the opto-mechanical cooling rate and the minimum achievable phonon number. We find that reaching the quantum limit of arbitrarily small phonon numbers requires going into the good cavity (resolved phonon sideband) regime where the cavity linewidth is much smaller than the mechanical frequency and the corresponding cavity detuning. This is in contrast to the common assumption that the mechanical frequency and the cavity detuning should be comparable to the cavity damping.Comment: 5 pages, 2 figure

    Persistent holes in a fluid

    Get PDF
    We observe stable holes in a vertically oscillated 0.5 cm deep aqueous suspension of cornstarch for accelerations a above 10g. Holes appear only if a finite perturbation is applied to the layer. Holes are circular and approximately 0.5 cm wide, and can persist for more than 10^5 cycles. Above a = 17g the rim of the hole becomes unstable producing finger-like protrusions or hole division. At higher acceleration, the hole delocalizes, growing to cover the entire surface with erratic undulations. We find similar behavior in an aqueous suspension of glass microspheres.Comment: 4 pages, 6 figure

    Prospects of Open Charm Production at GSI-FAIR and J-PARC

    Full text link
    We present a detailed phenomenological study of the prospects of open charm physics at the future pˉp\bar{p}p and pppp facilities GSI-FAIR and J-PARC, respectively. In particular, we concentrate on differential cross sections and the charge and longitudinal double-spin asymmetries at next-to-leading order accuracy. Theoretical uncertainties for the proposed observables are estimated by varying the charm quark mass and the renormalization and factorization scales.Comment: 11 pages, 13 figure

    Fleming's bound for the decay of mixed states

    Full text link
    Fleming's inequality is generalized to the decay function of mixed states. We show that for any symmetric hamiltonian hh and for any density operator ρ\rho on a finite dimensional Hilbert space with the orthogonal projection Π\Pi onto the range of ρ\rho there holds the estimate \Tr(\Pi \rme^{-\rmi ht}\rho \rme^{\rmi ht}) \geq\cos^{2}((\Delta h)_{\rho}t) for all real tt with (Δh)ρtπ/2.(\Delta h)_{\rho}| t| \leq\pi/2. We show that equality either holds for all tRt\in\mathbb{R} or it does not hold for a single tt with 0<(Δh)ρtπ/2.0<(\Delta h)_{\rho}| t| \leq\pi/2. All the density operators saturating the bound for all tR,t\in\mathbb{R}, i.e. the mixed intelligent states, are determined.Comment: 12 page

    Poynting's theorem and energy conservation in the propagation of light in bounded media

    Full text link
    Starting from the Maxwell-Lorentz equations, Poynting's theorem is reconsidered. The energy flux vector is introduced as S_e=(E x B)/mu_0 instead of E x H, because only by this choice the energy dissipation can be related to the balance of the kinetic energy of the matter subsystem. Conservation of the total energy as the sum of kinetic and electromagnetic energy follows. In our discussion, media and their microscopic nature are represented exactly by their susceptibility functions, which do not necessarily have to be known. On this footing, it can be shown that energy conservation in the propagation of light through bounded media is ensured by Maxwell's boundary conditions alone, even for some frequently used approximations. This is demonstrated for approaches using additional boundary conditions and the dielectric approximation in detail, the latter of which suspected to violate energy conservation for decades.Comment: 5 pages, RevTeX4, changes: complete rewrit

    Tangential View and Intraoperative Three-Dimensional Fluoroscopy for the Detection of Screw-Misplacements in Volar Plating of Distal Radius Fractures

    Get PDF
    Background: Volar locking plate fixation has become the gold standard in the treatment of unstable distal radius fractures. Juxta-articular screws should be placed as close as possible to the subchondral zone, in an optimized length to buttress the articular surface and address the contralateral cortical bone. On the other hand, intra-articular screw misplacements will promote osteoarthritis, while the penetration of the contralateral bone surface may result in tendon irritations and ruptures. The intraoperative control of fracture reduction and implant positioning is limited in the common postero-anterior and true lateral two-dimensional (2D)-fluoroscopic views. Therefore, additional 2D-fluoroscopic views in different projections and intraoperative three-dimensional (3D) fluoroscopy were recently reported. Nevertheless, their utility has issued controversies. Objectives: The following questions should be answered in this study; 1) Are the additional tangential view and the intraoperative 3D fluoroscopy useful in the clinical routine to detect persistent fracture dislocations and screw misplacements, to prevent revision surgery? 2) Which is the most dangerous plate hole for screw misplacement? Patients and Methods: A total of 48 patients (36 females and 13 males) with 49 unstable distal radius fractures (22 x 23 A; 2 x 23 B, and 25 x 23 C) were treated with a 2.4 mm variable angle LCP Two-Column volar distal radius plate (Synthes GmbH, Oberdorf, Switzerland) during a 10-month period. After final fixation, according to the manufactures' technique guide and control of implant placement in the two common perpendicular 2D-fluoroscopic images (postero-anterior and true lateral), an additional tangential view and intraoperative 3D fluoroscopic scan were performed to control the anatomic fracture reduction and screw placements. Intraoperative revision rates due to screw misplacements (intra-articular or overlength) were evaluated. Additionally, the number of surgeons, time and radiation-exposure, for each step of the operating procedure, were recorded. Results: In the standard 2D-fluoroscopic views (postero-anterior and true lateral projection), 22 screw misplacements of 232 inserted screws were not detected. Based on the additional tangential view, 12 screws were exchanged, followed by further 10 screws after performing the 3D fluoroscopic scan. The most lateral screw position had the highest risk for screw misplacement (accounting for 45.5% of all exchanged screws). The mean number of images for the tangential view was 3 ± 2.5 images. The mean surgical time was extended by 10.02 ± 3.82 minutes for the 3D fluoroscopic scan. An additional radiation exposure of 4.4 ± 4.5seconds, with a dose area product of 39.2 ± 14.5 cGy/cm2 were necessary for the tangential view and 54.4 ± 20.9 seconds with a dose area product of 2.1 ± 2.2 cGy/cm2, for the 3D fluoroscopic scan. Conclusions: We recommend the additional 2D-fluoroscopic tangential view for detection of screw misplacements caused by overlength, with penetration on the dorsal cortical surface of the distal radius, predominantly observed for the most lateral screw position. The use of intraoperative 3D fluoroscopy did not become accepted in our clinical routine, due to the technical demanding and time consuming procedure, with a limited image quality so far
    corecore