26 research outputs found

    Human osteochondritis dissecans fragment-derived chondrocyte characteristics ex vivo, after monolayer expansion-induced de-differentiation, and after re-differentiation in alginate bead culture

    Get PDF
    Background Autologous chondrocyte implantation (ACI) is a therapy for articular cartilage and osteochondral lesions that relies on notch- or trochlea-derived primary chondrocytes. An alternative cell source for ACI could be osteochondritis dissecans (OCD) fragment-derived chondrocytes. Assessing the potential of these cells, we investigated their characteristics ex vivo and after monolayer expansion, as monolayer expansion is an integral step of ACI. However, as monolayer expansion can induce de-differentiation, we asked whether monolayer-induced de-differentiation can be reverted through successive alginate bead culture. Methods Chondrocytes were isolated from the OCD fragments of 15 patient knees with ICRS grades 3–4 lesions for ex vivo analyses, primary alginate bead culture, monolayer expansion, and alginate bead culture following monolayer expansion for attempting re-differentiation. We determined yield, viability, and the mRNA expression of aggrecan and type I, II, and X collagen. Results OCD fragment-derived chondrocyte isolation yielded high numbers of viable cells with a low type I:II collagen expression ratio ( 1. Conclusion OCD fragment derived human chondrocytes may hold not yet utilized clinical potential for cartilage repair. Keywords: Chondrocyte; Articular cartilage; De-differentiation Re-differentiation; Monolayer expansion; Alginate bead cultur

    Influence of the Chemical Composition of the Used Powder on the Fatigue Behavior of Additively Manufactured Materials

    Get PDF
    To exploit the whole potential of Additive Manufacturing (AM), a sound knowledge about the mechanical and especially cyclic properties of AM materials as well as their dependency on the process parameters is indispensable. In the presented work, the influence of chemical composition of the used powder on the fatigue behavior of Selectively Laser Melted (SLM) and Laser Deposition Welded (LDW) specimens made of austenitic stainless steel AISI 316L was investigated. Therefore, in each manufacturing process two variations of chemical composition of the used powder were utilized. For qualitative characterization of the materials cyclic deformation behavior, load increase tests (LITs) were performed and further used for the physically based lifetime calculation method (PhyBaLLIT), enabling an efficient determination of stress (S)–number of cycles to failure (Nf) curves (S–Nf), which show excellent correlation to additionally performed constant amplitude tests (CATs). Moreover, instrumented cyclic indentation tests (PhyBaLCHT) were utilized to characterize the materials’ defect tolerance in a comparably short time. All material variants exhibit a high influence of microstructural defects on the fatigue properties. Consequently, for the SLM process a higher fatigue lifetime at lower stress amplitudes could be observed for the batch with a higher defect tolerance, resulting from a more pronounced deformation induced austenite–α’-martensite transformation. In correspondence to that, the batch of LDW material with an increased defect tolerance exhibit a higher fatigue strength. However, the differences in defect tolerance between the LDW batches is only slightly influenced by phase transformation and seems to be mainly governed by differences in hardening potential of the austenitic microstructure. Furthermore, a significantly higher fatigue strength could be observed for SLM material in relation to LDW specimens, because of a refined microstructure and smaller microstructural defects of SLM specimens

    The FreeD module’s lateral translation timing in the gait robot Lokomat: a manual adaptation is necessary

    No full text
    Abstract Background Pelvic and trunk movements are often restricted in stationary robotic gait trainers. The optional FreeD module of the driven gait orthosis Lokomat offers a combined, guided lateral translation and transverse rotation of the pelvis and may therefore support weight shifting during walking. However, from clinical experience, it seems that the default setting of this timing does not correspond well with the timing of the physiological pelvic movement during the gait cycle. In the software, a manual adaptation of the lateral translation’s timing with respect to the gait cycle is possible. The aim of this study was to investigate if such an offset is indeed present and if a manual adaptation by the therapist can improve the timing towards a more physiological pattern comparable to physiological overground walking. Methods & Results Children and adolescents with neurologic gait disorders and a Gross Motor Function Classification System level I-IV completed two different walking conditions (FreeD Default and FreeD Time Offset) in the Lokomat. The medio-lateral center of mass positions were calculated from RGB-Depth video recordings with a marker-less motion capture algorithm. Data of 22 patients (mean age: 12 ± 3 years) were analyzed. Kinematic analyses showed that in the FreeD Default condition, the maximum lateral center of mass excursion occurred too early. In the FreeD Time Offset condition, the manual adaptation by the therapists led to a delay of the maximum center of mass displacement by 8.2% in the first phase of the gait cycle and by 4.9% in the second phase of the gait cycle compared to the FreeD Default condition. The maximum lateral center of mass excursion was closer to that during physiological overground walking in the FreeD Time Offset condition than in the FreeD Default condition. Conclusion A manual adaptation of the timing of the FreeD module in the Lokomat shifts pelvis kinematics in a direction of physiological overground walking. We recommend therapists to use this FreeD Time Offset function to adjust the phase of weight shifting for each patient individually to optimize the kinematic walking pattern when a restorative therapy approach is adopted

    Within- and between-therapist agreement on personalized parameters for robot-assisted gait therapy: the challenge of adjusting robotic assistance

    No full text
    Abstract Background Stationary robotic gait trainers usually allow for adjustment of training parameters, including gait speed, body weight support and robotic assistance, to personalize therapy. Consequently, therapists personalize parameter settings to pursue a relevant therapy goal for each patient. Previous work has shown that the choice of parameters influences the behavior of patients. At the same time, randomized clinical trials usually do not report the applied settings and do not consider them in the interpretation of their results. The choice of adequate parameter settings therefore remains one of the major challenges that therapists face in everyday clinical practice. For therapy to be most effective, personalization should ideally result in repeatable parameter settings for repeatable therapy situations, irrespective of the therapist who adjusts the parameters. This has not yet been investigated. Therefore, the aim of the present study was to investigate the agreement of parameter settings from session to session within a therapist and between two different therapists in children and adolescents undergoing robot-assisted gait training. Methods and results Fourteen patients walked in the robotic gait trainer Lokomat on 2 days. Two therapists from a pool of 5 therapists independently personalized gait speed, bodyweight support and robotic assistance for a moderately and a vigorously intensive therapy task. There was a very high agreement within and between therapists for the parameters gait speed and bodyweight support, but a substantially lower agreement for robotic assistance. Conclusion These findings imply that therapists perform consistently at setting parameters that have a very clear and visible clinical effect (e.g. walking speed and bodyweight support). However, they have more difficulties with robotic assistance, which has a more ambiguous effect because patients may respond differently to changes. Future work should therefore focus on better understanding patient reactions to changes in robotic assistance and especially on how instructions can be employed to steer these reactions. To improve the agreement, we propose that therapists link their choice of robotic assistance to the individual therapy goals of the patients and closely guide the patients during walking with instructions

    Differences in injury pattern and prevalence of cartilage lesions in knee and ankle joints: a retrospective cohort study

    No full text
    Osteoarthritis (OA) is more common in the knee compared to the ankle joint. This can not be explained exclusively by anatomical and biomechanical differences. The aim of this study is to analyze and compare the injury pattern (clinically) and the cartilage lesions (arthroscopically) of knee and ankle joints in a cohort of patients from the same catchment area. A retrospective study of the clinical data of 3122 patients (2139 outpatients and 983 inpatients) was performed, who were treated due to an injury of the knee and ankle joint. Statistical analysis was performed using SigmaStat 3.0 (SPSS Inc, Chicago, USA). There is a higher prevalence of injuries in the ankle as compared to the knee joint in this population from the same catchment area. In contrast, high-grade cartilage lesions are more prevalent in the knee, whereas low grade cartilage lesions are equally distributed between knee and ankle. From this data it can be concluded that the frequency of injuries and the injury pattern of knee versus ankle joints do not correlate with the severity of cartilage lesions and may therefore have no direct influence on the differential incidence of OA in those two joints

    Clustering trunk movements of children and adolescents with neurological gait disorders undergoing robot-assisted gait therapy: the functional ability determines if actuated pelvis movements are clinically useful

    No full text
    INTRODUCTION: Robot-assisted gait therapy is frequently used for gait therapy in children and adolescents but has been shown to limit the physiological excursions of the trunk and pelvis. Actuated pelvis movements might support more physiological trunk patterns during robot-assisted training. However, not every patient is expected to react identically to actuated pelvis movements. Therefore, the aim of the present study was to identify different trunk movement patterns with and without actuated pelvis movements and compare them based on their similarity to the physiological gait pattern. METHODS AND RESULTS: A clustering algorithm was used to separate pediatric patients into three groups based on different kinematic reactions of the trunk to walking with and without actuated pelvis movements. The three clusters included 9, 11 and 15 patients and showed weak to strong correlations with physiological treadmill gait. The groups also statistically differed in clinical assessment scores, which were consistent with the strength of the correlations. Patients with a higher gait capacity reacted with more physiological trunk movements to actuated pelvis movements. CONCLUSION: Actuated pelvis movements do not lead to physiological trunk movements in patients with a poor trunk control, while patients with better walking functions can show physiological trunk movements. Therapists should carefully consider for whom and why they decide to include actuated pelvis movements in their therapy plan.ISSN:1743-000
    corecore