28 research outputs found

    Low‐Density Lipoprotein Cholesterol Attributable Cardiovascular Disease Risk Is Sex Specific

    Get PDF
    Background: Epidemiological studies show that women are generally at lower risk for cardiovascular disease than men. Here, we investigated the sex‐specific differential effect of genetically increased low‐density lipoprotein cholesterol (LDL‐C) on cardiovascular disease (CVD) and other lipid‐associated diseases. Methods and Results: This is a 2‐sample Mendelian randomization study that uses individual participant data from 425 043 participants from the UK Biobank, including 229 279 female participants. An 80‐variant LDL‐C weighted genetic score was generated. Linear and logistic regression models with interactions were used to identify differences between sex‐specific LDL‐C effects on lipids, carotid‐intima media thickness, and multiple cardiovascular outcomes such as CVD, ischemic heart disease, peripheral artery disease, heart failure, aortic valve disease, type 2 diabetes, atrial fibrillation, and aortic aneurysm and dissection. After correction for multiple testing, we observed that the genetically increased LDL‐C effect on CVD events was sex specific: per SD genetically increased LDL‐C, female participants had a higher LDL‐C increase but an attenuated CVD risk increase compared with male participants (LDL‐C: female participants 0.71 mmol/L, 95% CI, 0.70–0.72 and male participants 0.57 mmol/L, 95% CI, 0.56–0.59. P for interaction: 5.03×10−60; CVD: female participants: odds ratio [OR], 1.32; 95% CI 1.24–1.40 and male participants: OR, 1.52; 95% CI, 1.46–1.58. P for interaction: 9.88×10−5). We also observed attenuated risks for ischemic heart disease and (nominally for) heart failure in female participants, and genetically increased LDL‐C results in higher risk for aortic valve disease in female participants compared with male participants. Genetically increased LDL‐C was also associated with an attenuated carotid‐intima media thickness increase in female participants. We did not observe other significant attenuations. Sensitivity analyses with an unweighted genetic score and sex‐specific weighted genetic scores showed similar results. Conclusions: We found that genetically increased LDL‐C has a sex‐specific differential effect on the risk for cardiovascular disease, ischemic heart disease, heart failure, and aortic valve stenosis. Our observations provide evidence that LDL‐C might be a less important determinant of CVD in women compared with men, suggesting that male patients might benefit more from LDL‐C targeted therapies for CVD management than female patients and warranting investigations into the sex‐specific relative contribution of risk factors for CVD

    Prospective associations between diet quality, dietary components, and risk of cardiometabolic multimorbidity in older British men

    Get PDF
    PURPOSE: Cardiometabolic multimorbidity (CMM) is a major public health challenge. This study investigated the prospective relationships between diet quality, dietary components, and risk of CMM in older British men. METHODS: We used data from the British Regional Heart Study of 2873 men aged 60-79 free of myocardial infarction (MI), stroke, and type 2 diabetes (T2D) at baseline. CMM was defined as the coexistence of two or more cardiometabolic diseases, including MI, stroke, and T2D. Sourcing baseline food frequency questionnaire, the Elderly Dietary Index (EDI), which was a diet quality score based on Mediterranean diet and MyPyramid for Older Adults, was generated. Cox proportional hazards regression and multi-state model were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: During a median follow-up of 19.3 years, 891 participants developed first cardiometabolic disease (FCMD), and 109 developed CMM. Cox regression analyses found no significant association between baseline EDI and risk of CMM. However, fish/seafood consumption, a dietary component of the EDI score, was inversely associated with risk of CMM, with HR 0.44 (95% CI 0.26, 0.73) for consuming fish/seafood 1-2 days/week compared to less than 1 day/week after adjustment. Further analyses with multi-state model showed that fish/seafood consumption played a protective role in the transition from FCMD to CMM. CONCLUSIONS: Our study did not find a significant association of baseline EDI with CMM but showed that consuming more fish/seafood per week was associated with a lower risk of transition from FCMD to CMM in older British men

    Sex-specific Mendelian randomisation to assess the causality of sex differences in the effects of risk factors and treatment: spotlight on hypertension

    Get PDF
    Hypertension is a key modifiable risk factor for cardiovascular disease. Several observational studies have found a stronger association of blood pressure and cardiovascular disease risk in women compared to men. Since observational studies can be affected by sex-specific residual confounding and reverse causation, it remains unclear whether these differences reflect actual differential effects. Other study designs are needed to uncover the causality of sex differences in the strength of risk factor and treatment effects. Mendelian randomisation (MR) uses genetic variants as instrumental variables to provide evidence about putative causal relations between risk factors and outcomes. By exploiting the random allocation of genes at gamete forming, MR is unaffected by confounding and results in more reliable causal effect estimates. In this review, we discuss why and how sex-specific MR and cis-MR could be used to study sex differences in risk factor and drug target effects. Sex-specific MR can be helpful to strengthen causal inferences in the field of sex differences, where it is often challenging to distinguish nature from nurture. The challenge of sex-specific (drug target) MR lays in leveraging robust genetic instruments from sex-specific GWAS studies which are not commonly available. Knowledge on sex-specific causal effects of hypertension, or other risk factors, could improve clinical practice and health policies by tailoring interventions based on personalised risk. Drug target MR can help to determine the anticipated on-target effects of a drug compound and to identify targets to pursue in drug developmen

    Dissecting the IL-6 pathway in cardiometabolic disease: A Mendelian randomization study on both IL6 and IL6R

    Get PDF
    Aims: Chronic inflammation is a risk factor for cardiovascular disease (CVD). IL-6 signalling perturbation through IL-6 or IL-6R blockade may have potential benefit on cardiovascular risk. It is unknown whether targeting either IL-6 or IL-6 receptor may result in similar effects on CVD and adverse events. We compared the anticipated effects of targeting IL-6 and IL-6 receptor on cardiometabolic risk and potential side effects. // Methods: We constructed four instruments: two main instruments with genetic variants in the IL6 and IL6R loci weighted for their association with CRP, and two after firstly filtering variants for their association with IL-6 or IL-6R expression. Analyses were performed for coronary artery disease (CAD), ischemic stroke, atrial fibrillation (AF), heart failure, type 2 diabetes (T2D), rheumatoid arthritis (RA), infection endpoints, and quantitative haematological, metabolic and anthropometric parameters. // Results: A 1 mg/L lower CRP by the IL6 instrument was associated with lower CAD (odds ratio [OR] 0.86, 95% confidence interval [CI] 0.77;0.96), AF and T2D risk. A 1 mg/L lower CRP by the IL6R instrument was associated with lower CAD (OR 0.90, 95% CI 0.86;0.95), any stroke and ischemic stroke, AF, RA risk and higher pneumonia risk. The eQTL-filtered results were in concordance with the main results, but with wider confidence intervals. // Conclusions: IL-6 signalling perturbation by either IL6 or IL6R genetic instruments is associated with a similar risk reduction for multiple cardiometabolic diseases, suggesting that both IL-6 and IL-6R are potential therapeutic targets to lower CVD. Moreover, IL-6 rather than IL-6R inhibition might have a more favourable pneumonia risk

    Modelling a two-stage adult population screen for autosomal dominant familial hypercholesterolaemia: cross-sectional analysis within the UK Biobank

    Get PDF
    Background: Most people with autosomal dominant familial hypercholesterolaemia (FH) remain undetected, which represents a missed opportunity for coronary heart disease prevention. Objective: To evaluate the performance of two-stage adult population screening for FH. Design: Using data from UK Biobank, we estimated the screening performance of different low-density lipoprotein cholesterol (LDL-C) cut-offs (stage 1) to select adults for DNA sequencing (stage 2) to identify individuals with FH-causing variants inLDLR, APOB, PCSK9andAPOE. We estimated the number of additional FH cases detected by cascade testing of first-degree relatives of index cases and compared the overall approach with screening in childhood. Setting: UK Biobank. Participants: 140 439 unrelated participants of European ancestry from UK Biobank with information on circulating LDL-C concentration and exome sequence. Main outcome measures: For different LDL-C cut-offs, we estimated the detection and false-positive rate, the proportion of individuals who would be referred for DNA sequencing (stage 1 screen positive rate), and the number of FH cases identified by population screening followed by cascade testing. Results: We identified 488 individuals with an FH-causing variant and 139 951 without (prevalence 1 in 288). An LDL-C cut-off of >4.8 mmol/L had a stage 1 detection rate (sensitivity) of 40% (95% CI 36 to 44%) for a false-positive rate of 10% (95% CI 10 to 11%). Detection rate increased at lower LDL-C cut-offs but at the expense of higher false-positive and screen positive rates, and vice versa. Two-stage screening of 100 000 adults using an LDL-C cut-off of 4.8 mmol/L would generate 10 398 stage 1 screen positives for sequencing, detect 138 FH cases and miss 209. Up to 207 additional cases could be detected throughtwo-generationcascade testing of first-degree relatives. By comparison, based on previously published data, childhood screening followed by cascade testing was estimated to detect nearly three times as many affected individuals for around half the sequencing burden. Conclusions: Two-stage adult population screening for FH could help achieve the 25% FH case detection target set in the National Health Service Long Term Plan, but less efficiently than childhood screening and with a greater sequencing requirement

    Performance of polygenic risk scores in screening, prediction, and risk stratification: secondary analysis of data in the Polygenic Score Catalog

    Get PDF
    OBJECTIVE: To clarify the performance of polygenic risk scores in population screening, individual risk prediction, and population risk stratification. DESIGN: Secondary analysis of data in the Polygenic Score Catalog. SETTING: Polygenic Score Catalog, April 2022. Secondary analysis of 3915 performance metric estimates for 926 polygenic risk scores for 310 diseases to generate estimates of performance in population screening, individual risk, and population risk stratification. PARTICIPANTS: Individuals contributing to the published studies in the Polygenic Score Catalog. MAIN OUTCOME MEASURES: Detection rate for a 5% false positive rate (DR5) and the population odds of becoming affected given a positive result; individual odds of becoming affected for a person with a particular polygenic score; and odds of becoming affected for groups of individuals in different portions of a polygenic risk score distribution. Coronary artery disease and breast cancer were used as illustrative examples. RESULTS: For performance in population screening, median DR5 for all polygenic risk scores and all diseases studied was 11% (interquartile range 8-18%). Median DR5 was 12% (9-19%) for polygenic risk scores for coronary artery disease and 10% (9-12%) for breast cancer. The population odds of becoming affected given a positive results were 1:8 for coronary artery disease and 1:21 for breast cancer, with background 10 year odds of 1:19 and 1:41, respectively, which are typical for these diseases at age 50. For individual risk prediction, the corresponding 10 year odds of becoming affected for individuals aged 50 with a polygenic risk score at the 2.5th, 25th, 75th, and 97.5th centiles were 1:54, 1:29, 1:15, and 1:8 for coronary artery disease and 1:91, 1:56, 1:34, and 1:21 for breast cancer. In terms of population risk stratification, at age 50, the risk of coronary artery disease was divided into five groups, with 10 year odds of 1:41 and 1:11 for the lowest and highest quintile groups, respectively. The 10 year odds was 1:7 for the upper 2.5% of the polygenic risk score distribution for coronary artery disease, a group that contributed 7% of cases. The corresponding estimates for breast cancer were 1:72 and 1:26 for the lowest and highest quintile groups, and 1:19 for the upper 2.5% of the distribution, which contributed 6% of cases. CONCLUSION: Polygenic risk scores performed poorly in population screening, individual risk prediction, and population risk stratification. Strong claims about the effect of polygenic risk scores on healthcare seem to be disproportionate to their performance

    Dementia in the older population is associated with neocortex content of serum amyloid P component.

    Get PDF
    Despite many reported associations, the direct cause of neurodegeneration responsible for cognitive loss in Alzheimer's disease and some other common dementias is not known. The normal human plasma protein, serum amyloid P component, a constituent of all human fibrillar amyloid deposits and present on most neurofibrillary tangles, is cytotoxic for cerebral neurones in vitro and in experimental animals in vivo. The neocortical content of serum amyloid P component was immunoassayed in 157 subjects aged 65 or more with known dementia status at death, in the large scale, population-representative, brain donor cohort of the Cognitive Function and Ageing Study, which avoids the biases inherent in studies of predefined clinico-pathological groups. The serum amyloid P component values were significantly higher in individuals with dementia, independent of serum albumin content measured as a control for plasma in the cortex samples. The odds ratio for dementia at death in the high serum amyloid P component tertile was 5.24 (95% confidence interval 1.79-15.29) and was independent of Braak tangle stages and Thal amyloid-β phases of neuropathological severity. The strong and specific association of higher brain content of serum amyloid P component with dementia, independent of neuropathology, is consistent with a pathogenetic role in dementia.NIH

    Associations Between Measures of Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Cohort Study and Mendelian Randomization Analysis Using the UK Biobank.

    Get PDF
    Background The "healthy obese" hypothesis suggests the risks associated with excess adiposity are reduced in those with higher muscle quality (mass/strength). Alternative possibilities include loss of muscle quality as people become unwell (reverse causality) or unmeasured confounding. Methods and Results We conducted a cohort study using the UK Biobank (n=452 931). Baseline body mass index ( BMI) was used to quantify adiposity and handgrip strength ( HGS ) used for muscle quality. Outcomes were fatal and non-fatal cardiovascular disease, and mortality. As a secondary analysis we used waist-hip-ratio or fat mass percentage instead of BMI , and skeletal muscle mass index instead of HGS . In a subsample, we used gene scores for BMI , waist-hip-ratio and HGS in a Mendelian randomization ( MR ). BMI defined obesity was associated with an increased risk of all outcomes (hazard ratio [ HR ] range 1.10-1.82). Low HGS was associated with increased risks of cardiovascular and all-cause mortality ( HR range 1.39-1.72). HR s for the association between low HGS and cardiovascular disease events were smaller ( HR range 1.05-1.09). There was no suggestion of an interaction between HGS and BMI to support the healthy obese hypothesis. Results using other adiposity metrics were similar. There was no evidence of an association between skeletal muscle mass index and any outcome. Factorial Mendelian randomization confirmed no evidence for an interaction. Low genetically predicted HGS was associated with an increased risk of mortality ( HR range 1.08-1.19). Conclusions Our analyses do not support the healthy obese concept, with no evidence that the adverse effect of obesity on outcomes was reduced by improved muscle quality. Lower HGS was associated with increased risks of mortality in both observational and MR analyses, suggesting reverse causality may not be the sole explanation

    Triglyceride-containing lipoprotein sub-fractions and risk of coronary heart disease and stroke: A prospective analysis in 11,560 adults.

    Get PDF
    AIMS:Elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for cardiovascular disease; however, there is uncertainty about the role of total triglycerides and the individual triglyceride-containing lipoprotein sub-fractions. We measured 14 triglyceride-containing lipoprotein sub-fractions using nuclear magnetic resonance and examined associations with coronary heart disease and stroke. METHODS:Triglyceride-containing sub-fraction measures were available in 11,560 participants from the three UK cohorts free of coronary heart disease and stroke at baseline. Multivariable logistic regression was used to estimate the association of each sub-fraction with coronary heart disease and stroke expressed as the odds ratio per standard deviation increment in the corresponding measure. RESULTS:The 14 triglyceride-containing sub-fractions were positively correlated with one another and with total triglycerides, and inversely correlated with high-density lipoprotein cholesterol (HDL-C). Thirteen sub-fractions were positively associated with coronary heart disease (odds ratio in the range 1.12 to 1.22), with the effect estimates for coronary heart disease being comparable in subgroup analysis of participants with and without type 2 diabetes, and were attenuated after adjustment for HDL-C and LDL-C. There was no evidence for a clear association of any triglyceride lipoprotein sub-fraction with stroke. CONCLUSIONS:Triglyceride sub-fractions are associated with increased risk of coronary heart disease but not stroke, with attenuation of effects on adjustment for HDL-C and LDL-C

    The impact of fatty acids biosynthesis on the risk of cardiovascular diseases in Europeans and East Asians:A Mendelian randomization study

    Get PDF
    Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk
    corecore