8,244 research outputs found
Bulk and integrated acousto-optic spectrometers for radio astronomy
The development of sensitive heterodyne receivers (front end) in the centimeter and millimeter range, and the construction of sensitive RF spectrometers (back end) enable the spectral lines of interstellar molecules to be detected and identified. A technique was developed which combines acoustic bending of a collimated coherent light beam by a Bragg cell followed by detection by a sensitive array of photodetectors (thus forming an RF acousto-optic spectrometer (AOS). An AOS has wide bandwidth, large number of channels, and high resolution, and is compact, lightweight, and energy efficient. The thrust of receiver development is towards high frequency heterodyne systems, particularly in the millimeter, submillimeter, far infrared, and 10 micron spectral ranges
Acousto-optic spectrometer for radio astronomy
A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported
On the Fictitious Play and Channel Selection Games
Considering the interaction through mutual interference of the different
radio devices, the channel selection (CS) problem in decentralized parallel
multiple access channels can be modeled by strategic-form games. Here, we show
that the CS problem is a potential game (PG) and thus the fictitious play (FP)
converges to a Nash equilibrium (NE) either in pure or mixed strategies. Using
a 2-player 2-channel game, it is shown that convergence in mixed strategies
might lead to cycles of action profiles which lead to individual spectral
efficiencies (SE) which are worse than the SE at the worst NE in mixed and pure
strategies. Finally, exploiting the fact that the CS problem is a PG and an
aggregation game, we present a method to implement FP with local information
and minimum feedback.Comment: In proc. of the IEEE Latin-American Conference on Communications
(LATINCOM), Bogota, Colombia, September, 201
Metastable states influence on the magnetic behavior of the triangular lattice: Application to the spin-chain compound Ca3Co2O6
It is known that the spin-chain compound Ca3Co2O6 exhibits very interesting
plateaus in the magnetization as a function of the magnetic field at low
temperatures. The origin of them is still controversial. In this paper we study
the thermal behavior of this compound with a single-flip Monte Carlo simulation
on a triangular lattice and demonstrate the decisive influence of metastable
states in the splitting of the ferrimagnetic 1/3 plateau below 10 K. We
consider the [Co2O6]n chains as giant magnetic moments described by large Ising
spins on planar clusters with open boundary conditions. With this simple
frozen-moment model we obtain stepped magnetization curves which agree quite
well with the experimental results for different sweeping rates. We describe
particularly the out-of-equilibrium states that split the low-temperature 1/3
plateau into three steps. They relax thermally to the 1/3 plateau, which has
long-range order at the equilibrium. Such states are further analyzed with
snapshots unveiling a domain-wall structure that is responsible for the
observed behavior of the 1/3 plateau. A comparison is also given of the exact
results in small triangular clusters with our Monte Carlo results, providing
further support for our thermal description of this compound.Comment: 8 pages, 11 figures, submitted to PR
Formation of Low Threshold Voltage Microlasers
Vertical cavity surface emitting lasers (VCSELs) with threshold voltages of 1.7V have been fabricated. The resistance-area product in these new vertical cavity lasers is comparable to that of edge-emitting lasers, and threshold currents as low as 3 mA have been measured. Molecular beam epitaxy was used to grow n-type mirrors, a quantum well active region, and a heavily Be-doped p-contact. After contact definition and alloying, passive high-reflectivity mirrors were deposited by reactive sputter deposition of SiO2/Si3N4 to complete the laser cavity
Effects of rf Current on Spin Transfer Torque Induced Dynamics
The impact of radiofrequency (rf) currents on the direct current (dc) driven
switching dynamics in current-perpendicular-to-plane nanoscale spin valves is
demonstrated. The rf currents dramatically alter the dc driven free layer
magnetization reversal dynamics as well as the dc switching level. This occurs
when the frequency of the rf current is tuned to a frequency range around the
dc driven magnetization precession frequencies. For these frequencies,
interactions between the dc driven precession and the injected rf induce
frequency locking and frequency pulling effects that lead to a measurable
dependence of the critical switching current on the frequency of the injected
rf. Based on macrospin simulations, including dc as well as rf spin torque
currents, we explain the origin of the observed effects.Comment: 5 pages, 4 figure
- …