20 research outputs found

    Brain Biochemistry and Personality: A Magnetic Resonance Spectroscopy Study

    Get PDF
    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy (1H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects

    White Matter Correlates of Neuropsychological Dysfunction in Systemic Lupus Erythematosus

    Get PDF
    Patients diagnosed with Systemic Lupus Erythematosus have similar levels of neuropsychological dysfunction (i.e., 20–50%) as those with Neuropsychiatric Systemic Lupus Erythematosus (NPSLE). We hypothesized a gradient between cognition and white matter integrity, such that strongest brain-behavior relationships would emerge in NPSLE, intermediate in non-NPSLE, and minimal in controls. We studied thirty-one patients (16 non-NPSLE; 15 NPSLE), ranging in age from 18 to 59 years old (100 % female), and eighteen age and gender matched healthy controls. DTI examinations were performed on a 1.5T scanner. A broad neuropsychological battery was administered, tapping attention, memory, processing speed, and executive functioning. The Total z-score consisted of the combined sum of all neuropsychological measures. In control subjects, we found no significant FA-Total z-score correlations. NPSLE, non-NPSLE, and control subjects differed significantly in terms of Total z-score (NPSLE = 22.25+/21.77, non-NPSLE = 21.22+/21.03, Controls = 20.10+/2.57; F = 13.2, p,.001). In non-NPSLE subjects, FA within the right external capsule was significantly correlated with Total z-score. In NPSLE subjects, the largest FA-Total z-score clusters were observed within the left anterior thalamic radiation and right superior longitudinal fasciculus. In subsequent analyses the largest number of significant voxels linked FA with the Processing Speed z-score in NPSLE. The current results reflect objective white matter correlates of neuropsychological dysfunction in both NPSLE and (to a lesser degree) in non-NPSLE. non-NPSLE and NPSLE subjects did not differ significantly in terms of depression, a

    Quantity yields quality when it comes to creativity: A brain and behavioral test of the equal-odds rule

    Get PDF
    The creativity literature is in search of a viable cognitive measure which can provide support for behavioral observations that higher ideational output is often associated with higher creativity (known as the equal-odds rule). One such measure has included divergent thinking: the production of many examples or uses for a common or single object or image. We sought to test the equal-odds rule using a measure of divergent thinking, and applied the consensual assessment technique to determine creative responses as opposed to merely original responses. We also sought to determine structural brain correlates of both ideational fluency and ideational creativity. Two-hundred forty-six subjects were subjected to a broad battery of behavioral measures, including a core measure of divergent thinking (Foresight), and measures of intelligence, creative achievement, and personality (i.e., Openness to Experience). Cortical thickness and subcortical volumes (e.g., thalamus) were measured using automated techniques (FreeSurfer). We found that higher number of responses on the divergent thinking task was significantly associated with higher creativity (r = .73) as independently assessed by three judges. Moreover, we found that creativity was predicted by cortical thickness in regions including the left frontal pole and left parahippocampal gyrus. These results support the equal-odds rule, and provide neuronal evidence implicating brain regions involved with thinking about the future and extracting future prospects

    Bivariate correlation coefficients between subcortical structures and significance** at p<.003 (Bonferroni correction at .05/19).

    No full text
    <p>L – left hemisphere structure; R – right hemisphere structure; CC – Corpus Callosum; Ant – Anterior; Ant/Mid – Anterior/Midbody; Mid – Midbody; Post/Mid – Posterior/Midbody; Post – Posterior; Pallidum – Globus Pallidus; Accumb – Nucleus Accumbens; Hippo – Hippocampus.</p

    Sex differences in the relationship between white matter connectivity and creativity

    No full text
    Creative cognition emerges from a complex network of interacting brain regions. This study investigated the relationship between the structural organization of the human brain and aspects of creative cognition tapped by divergent thinking tasks. Diffusion weighted imaging (DWI) was used to obtain fiber tracts from 83 segmented cortical regions. This information was represented as a network and metrics of connectivity organization, including connectivity strength, clustering and communication efficiency were computed, and their relationship to individual levels of creativity was examined. Permutation testing identified significant sex differences in the relationship between global connectivity and creativity as measured by divergent thinking tests. Females demonstrated significant inverse relationships between global connectivity and creative cognition, whereas there were no significant relationships observed in males. Node specific analyses revealed inverse relationships across measures of connectivity, efficiency, clustering and creative cognition in widespread regions in females. Our findings suggest that females involve more regions of the brain in processing to produce novel ideas to solutions, perhaps at the expense of efficiency (greater path lengths). Males, in contrast, exhibited few, relatively weak positive relationships across these measures. Extending recent observations of sex differences in connectome structure, our findings of sexually dimorphic relationships suggest a unique topological organization of connectivity underlying the generation of novel ideas in males and females

    Sagittal view of subcortical structures with segmentation examples from FreeSurfer of Caudate (light blue), Putamen (hot pink), Thalamus (green), Globus Pallidus (dark blue), Nucleus Accumbens (light brown), Amygdala (turquoise), and Hippocampus (yellow).

    No full text
    <p>Sagittal view of subcortical structures with segmentation examples from FreeSurfer of Caudate (light blue), Putamen (hot pink), Thalamus (green), Globus Pallidus (dark blue), Nucleus Accumbens (light brown), Amygdala (turquoise), and Hippocampus (yellow).</p

    Fronto-Parietal gray matter and white matter efficiency differentially predict intelligence in males and females

    No full text
    While there are minimal sex differences in overall intelligence, males, on average, have larger total brain volume and corresponding regional brain volumes compared to females, measures that are consistently related to intelligence. Limited research has examined which other brain characteristics may differentially contribute to intelligence in females to facilitate equal performance on intelligence measures. Recent reports of sex differences in the neural characteristics of the brain further highlight the need to differentiate how the structural neural characteristics relate to intellectual ability in males and females. The current study utilized a graph network approach in conjunction with structural equation modeling to examine potential sex differences in the relationship between white matter efficiency, fronto-parietal gray matter volume, and general cognitive ability (GCA). Participants were healthy adults (n = 244) who completed a battery of cognitive testing and underwent structural neuroimaging. Results indicated that in males, a latent factor of fronto-parietal gray matter was significantly related to GCA when controlling for total gray matter volume. In females, white matter efficiency and total gray matter volume were significantly related to GCA, with no specificity of the fronto-parietal gray matter factor over and above total gray matter volume. This work highlights that different neural characteristics across males and females may contribute to performance on intelligence measures. Hum Brain Mapp 37:4006–4016, 2016

    FA-Total z-score relationships in non-NPSLE.

    No full text
    <p>Significant regions (red/yellow) in which non-NPSLE patients had significant correlations between Fractional Anisotropy and Total z-score. Left – coronal view (front to back of head); middle – axial view (top to bottom of head); right – sagittal view (side to side of head). Green represents the center of major white matter tracts which represent the total regions of statistical analyses.</p
    corecore