8 research outputs found

    Uncertainty of ICESat-2 ATL06- and ATL08-Derived Snow Depths for Glacierized and Vegetated Mountain Regions

    Get PDF
    Seasonal snow melt dominates the hydrologic budget across a large portion of the globe. Snow accumulation and melt vary over a broad range of spatial scales, preventing accurate extrapolation of sparse in situ observations to watershed scales. The lidar onboard the Ice, Cloud, and land Elevation, Satellite (ICESat-2) was designed for precise mapping of ice sheets and sea ice, and here we assess the feasibility of snow depth-mapping using ICESat-2 data in more complex and rugged mountain landscapes. We explore the utility of ATL08 Land and Vegetation Height and ATL06 Land Ice Height differencing from reference elevation datasets in two end member study sites. We analyze ∼3 years of data for Reynolds Creek Experimental Watershed in Idaho\u27s Owyhee Mountains and Wolverine Glacier in southcentral Alaska\u27s Kenai Mountains. Our analysis reveals decimeter-scale uncertainties in derived snow depth and glacier mass balance at the watershed scale. Both accuracy and precision decrease as slope increases: the magnitudes of the median and median of the absolute deviation of elevation errors (MAD) vary from ∼0.2 m for slopes \u3c 5° to \u3e 1 m for slopes \u3e 20°. For glacierized regions, failure to account for intra- and inter-annual evolution of glacier surface elevations can strongly bias ATL06 elevations, resulting in under-estimation of the mass balance gradient with elevation. Based on these results, we conclude that ATL08 and ATL06 observations are best suited for characterization of watershed-scale snow depth and mass balance gradients over relatively shallow slopes with thick snowpacks. In these regions, ICESat-2 elevation residual-derived snow depth and mass balance transects can provide valuable watershed scale constraints on terrain parameter- and model-derived estimates of snow accumulation and melt

    Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data

    Get PDF
    Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea-level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing strategies. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods, but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty in order to enhance inter-comparison and empower physical process insights across glacier elevation-change studies

    Understanding Changes to Glacier and Ice Sheet Geometry: The Roles of Climate and Ice Dynamics

    Get PDF
    Glacier and ice sheet geometry depend on climatic and ice dynamic processes that are coupled and often highly complex. Thus, partitioning and understanding the drivers of change to glacier and ice sheet geometry requires creative approaches. Radiostratigraphy data document emergent layers in the ablation zone of western Greenland that emulate theoretical englacial flow paths. Yet true alignment between radar layers and the englacial flow field can be uncertain because these structures have travelled hundreds of km from their original point of deposition, have been shaped by ice deformation for millennia, and have been subjected to complex and three-dimensional ice motion across steep and rugged bedrock terrain. In Chapter 2 I address this problem. Using ice dynamics information from a thermomechanically coupled, higher order ice sheet model, in conjunction with an observationally based test built on principles of mass conservation, I demonstrate that real world effects do not disrupt alignment between targeted ablation zone emergent radar layers and the local, present-day ice flow field. Topographically driven processes such as wind-drifting, avalanching, and shading, can sustain mountain glaciers situated in settings that are otherwise unsuitable for maintaining glacier ice. Local topography can thus disrupt the way regional climate controls glacier retreat, which limits insight into the climate representativeness of some mountain glaciers. In Chapters 3 and 4 I address this issue. Analyzing glaciological, geodetic, and meteorological data, I quantitatively demonstrate that the glacier-climate relationship at a retreating cirque glacier evolved as mass balance processes associated with local topography became more influential from 1950 to 2014. I then assess regional glacier area changes in the Northern Rockies from the Little Ice Age glacial maxima to the modern. I characterize terrain parameters at each glacier and estimate glacier thickness. Using these data and extremely simple models of ice mass loss I assess climatic, topographic, and glaciological drivers. Predictable factors like initial glacier size, aspect, and elevation only partly explain the observed pattern of glacier disappearance. This implies that less predictable and poorly resolved processes like avalanching and wind-drifting drive spatially complex patterns of glacier mass change across this mountain landscape

    Radiostratigraphy Reflects the Present-Day, Internal Ice Flow Field in the Ablation Zone of Western Greenland

    No full text
    Englacial radar reflectors in the ablation zone of the Greenland Ice Sheet are derived from layering deposited in the accumulation zone over past millennia. The original layer structure is distorted by ice flow toward the margin. In a simplified case, shear and normal strain incurred between the ice divide and terminus should align depositional layers such that they closely approximate particle paths through the ablation zone where horizontal motion dominates. It is unclear, however, if this relationship holds in western Greenland where complex bed topography, three dimensional ice flow, and historical changes to ice sheet mass and geometry since layer deposition may promote a misalignment between present-day layer orientation and the modern ice flow field. We investigate this problem using a suite of analyses that leverage ice sheet models and observational datasets. Our findings suggest that across a study sector of western Greenland, the radiostratigraphy of the ablation zone is closely aligned with englacial particle paths, and is not far departed from a state of balance. The englacial radiostratigraphy thus provides insight into the modern, local, internal flow field, and may serve to further constrain ice sheet models that simulate ice dynamics in this region

    Reanalysis of the US Geological Survey Benchmark Glaciers: Long-Term Insight into Climate Forcing of Glacier Mass Balance

    Get PDF
    Mountain glaciers integrate climate processes to provide an unmatched signal of regional climate forcing. However, extracting the climate signal via intercomparison of regional glacier mass-balance records can be problematic when methods for extrapolating and calibrating direct glaciological measurements are mixed or inconsistent. To address this problem, we reanalyzed and compared long-term mass-balance records from the US Geological Survey Benchmark Glaciers. These five glaciers span maritime and continental climate regimes of the western United States and Alaska. Each glacier exhibits cumulative mass loss since the mid-20th century, with average rates ranging from −0.58 to −0.30 m w.e. a−1. We produced a set of solutions using different extrapolation and calibration methods to inform uncertainty estimates, which range from 0.22 to 0.44 m w.e. a−1. Mass losses are primarily driven by increasing summer warming. Continentality exerts a stronger control on mass loss than latitude. Similar to elevation, topographic shading, snow redistribution and glacier surface features often exert important mass-balance controls. The reanalysis underscores the value of geodetic calibration to resolve mass-balance magnitude, as well as the irreplaceable value of direct measurements in contributing to the process-based understanding of glacier mass balance

    Presentation_1_Radiostratigraphy Reflects the Present-Day, Internal Ice Flow Field in the Ablation Zone of Western Greenland.pdf

    No full text
    <p>Englacial radar reflectors in the ablation zone of the Greenland Ice Sheet are derived from layering deposited in the accumulation zone over past millennia. The original layer structure is distorted by ice flow toward the margin. In a simplified case, shear and normal strain incurred between the ice divide and terminus should align depositional layers such that they closely approximate particle paths through the ablation zone where horizontal motion dominates. It is unclear, however, if this relationship holds in western Greenland where complex bed topography, three dimensional ice flow, and historical changes to ice sheet mass and geometry since layer deposition may promote a misalignment between present-day layer orientation and the modern ice flow field. We investigate this problem using a suite of analyses that leverage ice sheet models and observational datasets. Our findings suggest that across a study sector of western Greenland, the radiostratigraphy of the ablation zone is closely aligned with englacial particle paths, and is not far departed from a state of balance. The englacial radiostratigraphy thus provides insight into the modern, local, internal flow field, and may serve to further constrain ice sheet models that simulate ice dynamics in this region.</p
    corecore