33 research outputs found

    Publishing data to support the fight against human vector-borne diseases

    Get PDF
    Vector-borne diseases are responsible for more than 17% of human cases of infectious diseases. In most situations, effective control of debilitating and deadly vector-bone diseases (VBDs), such as malaria, dengue, chikungunya, yellow fever, Zika and Chagas requires up-to-date, robust and comprehensive information on the presence, diversity, ecology, bionomics and geographic spread of the organisms that carry and transmit the infectious agents. Huge gaps exist in the information related to these vectors, creating an essential need for campaigns to mobilise and share data. The publication of data papers is an effective tool for overcoming this challenge. These peer-reviewed articles provide scholarly credit for researchers whose vital work of assembling and publishing well-described, properly-formatted datasets often fails to receive appropriate recognition. To address this, GigaScience 's sister journal GigaByte partnered with the Global Biodiversity Information Facility (GBIF) to publish a series of data papers, with support from the Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organisation (WHO). Here we outline the initial results of this targeted approach to sharing data and describe its importance for controlling VBDs and improving public health

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Tissue Factor and PAR2 Signaling in the Tumor Microenvironment

    No full text

    Tumor Liquid Biopsies

    No full text
    International audienceThis book is a comprehensive guide to the techniques, clinical applications, and benefits of the different forms of liquid biopsy employed in patients with a variety of tumor types, including lung, breast and colorectal cancer. Offering detailed explanations, it discusses the how changes in tumors can be tracked using these cutting-edge technologies, which enable the detection and analysis of diverse circulating biomarkers: tumor cells, tumor DNA, tumor RNA (free or in exosomes), and fluid biomarkers identifiable by means of targeted proteomics. The use of such advanced technologies is enabling us to tackle questions and problems in a way that was not possible just a few years ago. We now have at our disposal an effective means of overcoming the problem of intratumor heterogeneity, which has limited the value of conventional biopsy approaches. As a consequence, oncology practice is about to change radically, toward truly personalized precision medicine. This book provides both clinicians and researchers with a thorough and up-to-date overview of progress in the field

    Evidence for tissue factor phosphorylation and its correlation with protease activated receptor expression and the prognosis of primary breast cancer.

    No full text
    Tissue factor (TF)-mediated protease activated receptor (PAR)-2 signaling is associated with a pro-migratory, invasive and pro-angiogenic phenotype in experimental models of breast cancer, and has been mechanistically coupled to phosphorylation of the TF cytoplasmic domain (pTF). However, the clinical relevance of these findings are unknown. Here, we provide first in vivo evidence of TF phosphorylation in experimental as well as clinical breast cancer tumors. pTF was demonstrated in MDA-MB-231 xenografts and in tumors from the MMTV-PyMT transgene model of spontaneous murine breast adenocarcinoma. Tumors from PAR-2-deficient transgenic mice were negative for pTF, thus linking pTF to PAR-2 signaling. The clinical correlation between TF, pTF, PAR-1, PAR-2, and VEGF-A was determined by IHC on tumors from a cohort of 172 consecutive primary breast cancer patients with a median follow-up time of 50 months. In 160 evaluable patient tumors, pTF was associated with TF (p=0.01) and cancer cell expression of PAR-1 (p=0.001), PAR-2 (p=0.014) and VEGF-A (p=0.003) using chi(2) test. PAR-2 and VEGF-A were co-expressed (p=0.013) and associated with a more aggressive phenotype. Interestingly, all patients experiencing recurrences had tumors expressing pTF and PAR-2, and pTF alone as well as co-expression of pTF and PAR-2 were significantly correlated with shorter recurrence-free survival (log rank test, p=0.04 and p=0.02, respectively). This study provides first evidence to link PAR-2 expression and TF phosphorylation to clinical data in human breast cancer. In conjunction with experimental tumor models, these data support an important role of TF-PAR-2 signaling in breast cancer recurrence. (c) 2009 UICC

    Inhibition of Tumor Growth and Angiogenesis by Soluble EphB4

    Get PDF
    EphB receptors and their ephrinB ligands play a key role in the formation of a regular vascular system. Recent studies have also shown the involvement of Eph/ephrin interactions in malignant tumor progression and angiogenesis. We have generated soluble monomeric EphB4 (sEphB4)-expressing A375 melanoma cells to study the effect of dominant negatively acting sEphB4 on tumor growth and angiogenesis. Soluble EphB4-expressing A375 tumors grown subcutaneously in nude mice show dramatically reduced tumor growth compared to control tumors. The proliferative capacity of sEphB4-expressing cells in monolayer culture is not altered. Yet, sEphB4-expressing A375 cells cannot establish proper cell-cell contacts in three-dimensional spheroids. However, sEphB4 transfectants have reduced proliferation and apoptosis rates when grown in three-dimensional culture in vitro or in subcutaneous tumors in vivo. Analysis of the vascular phenotype of the tumors revealed a reduction of intratumoral microvessel density in sEphB4-expressing tumors. Corresponding to these mouse experiments, a matched pair analysis of EphB4 and ephrinB2 expression in human colon carcinomas revealed significantly upregulated levels of EphB4 expression compared to adjacent normal tissue. Taken together, the data identify dual effects of sEphB4 on the tumor and the vascular compartment that collectively inhibit tumor growth
    corecore