6 research outputs found
Automatic letter-colour associations in non-synaesthetes and their relation to grapheme-colour synaesthesia
Although grapheme-colour synaesthesia is a well-characterized phenomenon in which achromatic letters and/or digits involuntarily trigger specific colour sensations, its underlying mechanisms remain unresolved. Models diverge on a central question: whether triggered sensations reflect (i) an overdeveloped capacity in normal cross-modal processing (i.e., sharing characteristics with the general population), or rather (ii) qualitatively deviant processing (i.e., unique to a few individuals). We here address this question on several fronts: first, with adult synaesthesia-trainees and second with congenital grapheme-colour synaesthetes. In Chapter 3, we investigate whether synaesthesia-like (automatic) letter-colour associations may be learned by non- synaesthetes into adulthood. To this end, we developed a learning paradigm that aimed to implicitly train such associations while keeping participants naiÌve as to the end-goal of the experiments (i.e., the formation of letter-colour associations), thus mimicking the learning conditions of acquired grapheme- colour synaesthesia (Hancock, 2006; Witthoft & Winawer, 2006). In two experiments, we found evidence for significant binding of colours to letters by non-synaesthetes. These learned associations showed synaesthesia-like characteristics despite an absence of conscious, colour concurrents, correlating with individual performance on synaesthetic Stroop-tasks (experiment 1), and modulated by the colour-opponency effect (experiment 2) (Nikolic, Lichti, & Singer, 2007), suggesting formation on a perceptual (rather than conceptual) level. In Chapter 4, we probed the nature of these learned, synaesthesia-like associations by investigating the brain areas involved in their formation. Using transcranial Direct Current Stimulation to interfere with two distinct brain regions, we found an enhancement of letter-colour learning in adult trainees following dlPFC-stimulation, suggesting a role for the prefrontal cortex in the release of binding processes. In Chapter 5, we attempt to integrate our results from synaesthesia-learners with the neural mechanisms of grapheme-colour synaesthesia, as assessed in six congenital synaesthetes using novel techniques in magnetoencephalography. While our results may not support the existence of a âsynaesthesia continuum,â we propose that they still relate to synaesthesia in a meaningful way
Hello from the other side: Robust contralateral interference in tactile detection
Touch is unique among the sensory modalities in that our tactile receptors are spread across the body surface and continuously receive different inputs at the same time. These inputs vary in type, properties, relevance according to current goals, and, of course, location on the body. Sometimes, they must be integrated, and other times set apart and distinguished. Here, we investigate how simultaneous stimulation to different body sites affects tactile cognition. Specifically, we characterized the impact of irrelevant tactile sensations on tactile change detection. To this end, we embedded detection targets amidst ongoing performance, akin to the conditions encountered in everyday life, where we are constantly confronted with new events within ongoing stimuli. In the set of experiments presented here, participants detected a brief intensity change (.04 s) within an ongoing vibrotactile stimulus (1.6 s) that was always presented in a constantly attended location. The intensity change (i.e., the detection target) varied parametrically, from hardly detectable to easily detectable. In half of the trials, irrelevant ongoing stimulation was simultaneously presented to a site across the body midline, but participants were instructed to ignore it. In line with previous bimanual studies employing brief onset targets, we document robust interference on performance due to the irrelevant stimulation at each of the measured body sites (homologous and nonhomologous fingers, and the contralateral ankle). After describing this basic phenomenon, we further examine the conditions under which such interference occurs in three additional tasks. In each task, we honed in on a different aspect of the stimulation protocol (e.g., hand distance, the strength of the irrelevant stimulation, the detection target itself) in order to better understand the principles governing the observed interference effects. Our findings suggest a minimal role for exogenous attentional capture in producing the observed interference effects (Exp. 2), and a principled distribution of attentional resources or sensory integration between body sides (Exps. 3, 4). In our last study (Exp. 4), we presented bilateral tactile targets of varying intensities to both the relevant and irrelevant stimulation sites. We then characterized the degree to which the irrelevant stimulation is also processed. Our resultsâthat participantsâ perception of target intensity is always proportional to the combined bilateral signalâsuggest that both body sites are equally weighed and processed despite clear instructions to attend only the target site. In light of this observation and participantsâ inability to use selection processes to guide their perception, we propose that bilateral tactile inputs are automatically combined, quite possibly early in the hierarchy of somatosensory processing
Superior Facial Expression, But Not Identity Recognition, in Mirror-Touch Synesthesia
Simulation models of expression recognition contend that to understand another's facial expressions, individuals map the perceived expression onto the same sensorimotor representations that are active during the experience of the perceived emotion. To investigate this view, the present study examines facial expression and identity recognition abilities in a rare group of participants who show facilitated sensorimotor simulation (mirror-touch synesthetes). Mirror-touch synesthetes experience touch on their own body when observing touch to another person. These experiences have been linked to heightened sensorimotor simulation in the shared-touch network (brain regions active during the passive observation and experience of touch). Mirror-touch synesthetes outperformed nonsynesthetic participants on measures of facial expression recognition, but not on control measures of face memory or facial identity perception. These findings imply a role for sensorimotor simulation processes in the recognition of facial affect, but not facial identity
The timing of cortical activation in associator graphene-colour synaesthetes using MEG
Graphene-colour synaesthetes experience an anomalous form of perception in which graphemes systematically induce specific colour concurrents in their mind's eye (âassociatorâ type). Although graphene-colour synaesthesia has been well characterised behaviourally, its neural mechanisms remain largely unresolved. There are currently several competing models, which can primarily be distinguished according to the anatomical and temporal predictions of synaesthesia-inducing neural activity. The first main model (Cross-Activation/Cascaded Cross-Tuning and its variants) posits early recruitment of occipital colour areas in the initial feed-forward sweep of brain activity. The second (Disinhibited Feedback) posits: (i) later involvement of a multisensory convergence zone (for example, in parietal cortices) after graphemes have been processed in their entirety; and (ii) subsequent feedback to early visual areas (i.e., occipital colour areas). In this study, we examine both the timing and anatomical correlates of associator graphene-colour synaesthetes (nâŻ=âŻ6) using MEG. Using innovative and unbiased analysis methods with little a priori assumptions, we applied Independent Component Analysis (ICA) on a single-subject level to identify the dominant patterns of activity corresponding to the induced, synaesthetic percept. We observed evoked activity that significantly dissociates between synaesthesia-inducing and non-inducing graphemes at approximately 190âŻms following graphene presentation. This effect is present in graphene-colour synaesthetes, but not in matched controls, and exhibits an occipito-parietal topology localised consistently within individuals to extrastriate visual cortices and superior parietal lobes. Due to the observed timing of this evoked activity and its localization, our results support a model predicting relatively late synaesthesia-inducing activity, more akin to the Disinhibited Feedback model
Recommended from our members
Superior Facial Expression, But Not Identity Recognition, in Mirror-Touch Synesthesia
No description supplie