4 research outputs found

    A large area 100 channel Picosec Micromegas detector with sub 20 ps time resolution

    Full text link
    The PICOSEC Micromegas precise timing detector is based on a Cherenkov radiator coupled to a semi-transparent photocathode and a Micromegas amplification structure. The first proof of concept single-channel small area prototype was able to achieve time resolution below 25 ps. One of the crucial aspects in the development of the precise timing gaseous detectors applicable in high-energy physics experiments is a modular design that enables large area coverage. The first 19-channel multi-pad prototype with an active area of approximately 10 cm2^2 suffered from degraded timing resolution due to the non-uniformity of the preamplification gap. A new 100 cm2^2 detector module with 100 channels based on a rigid hybrid ceramic/FR4 Micromegas board for improved drift gap uniformity was developed. Initial measurements with 80 GeV/c muons showed improvements in timing response over measured pads and a time resolution below 25 ps. More recent measurements with a new thinner drift gap detector module and newly developed RF pulse amplifiers show that the resolution can be enhanced to a level of 17~ps. This work will present the development of the detector from structural simulations, design, and beam test commissioning with a focus on the timing performance of a thinner drift gap detector module in combination with new electronics using an automated timing scan method

    Towards robust PICOSEC Micromegas precise timing detectors

    Full text link
    The PICOSEC Micromegas (MM) detector is a precise timing gaseous detector consisting of a Cherenkov radiator combined with a photocathode and a MM amplifying structure. A 100-channel non-resistive PICOSEC MM prototype with 10x10 cm^2 active area equipped with a Cesium Iodide (CsI) photocathode demonstrated a time resolution below 18 ps. The objective of this work is to improve the PICOSEC MM detector robustness aspects; i.e. integration of resistive MM and carbon-based photocathodes; while maintaining good time resolution. The PICOSEC MM prototypes have been tested in laboratory conditions and successfully characterised with 150 GeV/c muon beams at the CERN SPS H4 beam line. The excellent timing performance below 20 ps for an individual pad obtained with the 10x10 cm^2 area resistive PICOSEC MM of 20 MOhm/sq showed no significant time resolution degradation as a result of adding a resistive layer. A single-pad prototype equipped with a 12 nm thick Boron Carbide (B4C) photocathode presented a time resolution below 35 ps; opening up new possibilities for detectors with robust photocathodes. The results made the concept more suitable for the experiments in need of robust detectors with good time resolution

    Extension of the R&D Programme on Technologies for Future Experiments

    No full text
    we have conceived an extension of the R&D programme covering the period 2024 to 2028, i.e. again a 5-year period, however with 2024 as overlap year. This step was encouraged by the success of the current programme but also by the Europe-wide efforts to launch new Detector R&D collaborations in the framework of the ECFA Detector R&D Roadmap. We propose to continue our R&D programme with the main activities in essentially the same areas. All activities are fully aligned with the ECFA Roadmap and in most cases will be carried out under the umbrella of one of the new DRD collaborations. The program is a mix of natural continuations of the current activities and a couple of very innovative new developments, such as a radiation hard embedded FPGA implemented in an ASIC based on System-on-Chip technology. A special and urgent topic is the fabrication of Al-reinforced super-conducting cables. Such cables are a core ingredient of any new superconducting magnet such as BabyIAXO, PANDA, EIC, ALICE-3 etc. Production volumes are small and demands come in irregular intervals. Industry (world-wide) is no longer able and willing to fabricate such cables. The most effective approach (technically and financially) may be to re-invent the process at CERN, together with interested partners, and offer this service to the community
    corecore