201 research outputs found

    Chiral RKKY interaction in Pr2Ir2O7

    Full text link
    Motivated by the potential chiral spin liquid in the metallic spin ice Pr2Ir2O7, we consider how such a chiral state might be selected from the spin ice manifold. We propose that chiral fluctuations of the conducting Ir moments promote ferro-chiral couplings between the local Pr moments, as a chiral analogue of the magnetic RKKY effect. Pr2Ir2O7 provides an ideal setting to explore such a chiral RKKY effect, given the inherent chirality of the spin-ice manifold. We use a slave-rotor calculation on the pyrochlore lattice to estimate the sign and magnitude of the chiral coupling, and find it can easily explain the 1.5K transition to a ferro-chiral state.Comment: 9 pages; 7 figure

    The symplectic-N t-J model and s±_\pm superconductors

    Full text link
    The possible discovery of s±s_\pm superconducting gaps in the moderately correlated iron-based superconductors has raised the question of how to properly treat s±s_\pm gaps in strongly correlated superconductors. Unlike the d-wave cuprates, the Coulomb repulsion does not vanish by symmetry, and a careful treatment is essential. Thus far, only the weak correlation approaches have included this Coulomb pseudopotential, so here we introduce a symplectic N treatment of the t-J model that incorporates the strong Coulomb repulsion through the complete elimination of on-site pairing. Through a proper extension of time-reversal symmetry to the large N limit, symplectic-N is the first superconducting large N solution of the t-J model. For d-wave superconductors, the previous uncontrolled mean field solutions are reproduced, while for s±s_\pm superconductors, the SU(2) constraint enforcing single occupancy acts as a pair chemical potential adjusting the location of the gap nodes. This adjustment can capture the wide variety of gaps proposed for the iron based superconductors: line and point nodes, as well as two different, but related full gaps on different Fermi surfaces.Comment: 8 pages, 3 figure

    Spins, electrons and broken symmetries: realizations of two channel Kondo physics

    Get PDF
    Adding a second Kondo channel to heavy fermion materials reveals new exotic symmetry breaking phases associated with the development of Kondo coherence. In this paper, we review two such phases, the "hastatic order" associated with non-Kramers doublet ground states, where the two-channel nature of the Kondo coupling is guaranteed by virtual valence fluctuations to an excited Kramers doublet, and "composite pair superconductivity," where the two channels differ by charge 2e and can be thought of as virtual valence fluctuations to a pseudo-isospin doublet. The similarities and differences between these two orders will be discussed, along with possible realizations in actinide and rare earth materials like URu2Si2 and NpPd5Al2.Comment: 13 pages, 4 figures. Prepared for Comptes Rendu Physiques, Emergent phenomena in actinide

    Hidden and Hastatic Orders in URu2Si2

    Full text link
    The hidden order developing below 17.5K in the heavy fermion material URu2Si2 has eluded identification for over twenty five years. This paper will review the recent theory of ``hastatic order,'' a novel two-component order parameter capturing the hybridization between half-integer spin (Kramers) conduction electrons and the non-Kramers 5f^2 Ising local moments, as strongly indicated by the observation of Ising quasiparticles in de Haas-van Alphen measurements. Hastatic order differs from conventional magnetism as it is a spinor order that breaks both single and double time-reversal symmetry by mixing states of different Kramers parity. The broken time-reversal symmetry simply explains both the pseudo-Goldstone mode between the hidden order and antiferromagnetic phases and the nematic order seen in torque magnetometry. The spinorial nature of the hybridization also explains how the Kondo effect gives a phase transition, with the hybridization gap turning on at the hidden order transition as seen in scanning tunneling microscopy. Hastatic order also has a number of new predictions: a basal-plane magnetic moment of order .01\mu_B, a gap to longitudinal spin fluctuations that vanishes continuously at the first order antiferromagnetic transition and a narrow resonant nematic feature in the scanning tunneling spectra.Comment: Invited talk at SCES 2013 (Tokyo, Japan
    • …
    corecore