47 research outputs found

    Two-magnon Raman scattering in insulating cuprates: Modifications of the effective Raman operator

    Full text link
    Calculations of Raman scattering intensities in spin 1/2 square-lattice Heisenberg model, using the Fleury-Loudon-Elliott theory, have so far been unable to describe the broad line shape and asymmetry of the two magnon peak found experimentally in the cuprate materials. Even more notably, the polarization selection rules are violated with respect to the Fleury-Loudon-Elliott theory. There is comparable scattering in B1gB_{1g} and A1gA_{1g} geometries, whereas the theory would predict scattering in only B1gB_{1g} geometry. We review various suggestions for this discrepency and suggest that at least part of the problem can be addressed by modifying the effective Raman Hamiltonian, allowing for two-magnon states with arbitrary total momentum. Such an approach based on the Sawatzsky-Lorenzana theory of optical absorption assumes an important role of phonons as momentum sinks. It leaves the low energy physics of the Heisenberg model unchanged but substantially alters the Raman line-shape and selection rules, bringing the results closer to experiments.Comment: 7 pages, 6 figures, revtex. Contains some minor revisions from previous versio

    Defect-induced condensation and central peak at elastic phase transitions

    Full text link
    Static and dynamical properties of elastic phase transitions under the influence of short--range defects, which locally increase the transition temperature, are investigated. Our approach is based on a Ginzburg--Landau theory for three--dimensional crystals with one--, two-- or three--dimensional soft sectors, respectively. Systems with a finite concentration nDn_{\rm D} of quenched, randomly placed defects display a phase transition at a temperature Tc(nD)T_c(n_{\rm D}), which can be considerably above the transition temperature Tc0T_c^0 of the pure system. The phonon correlation function is calculated in single--site approximation. For T>Tc(nD)T>T_c(n_{\rm D}) a dynamical central peak appears; upon approaching Tc(nD)T_c(n_{\rm D}), its height diverges and its width vanishes. Using an appropriate self--consistent method, we calculate the spatially inhomogeneous order parameter, the free energy and the specific heat, as well as the dynamical correlation function in the ordered phase. The dynamical central peak disappears again as the temperatur is lowered below Tc(nD)T_c(n_{\rm D}). The inhomogeneous order parameter causes a static central peak in the scattering cross section, with a finite kk width depending on the orientation of the external wave vector k{\bf k} relative to the soft sector. The jump in the specific heat at the transition temperatur of the pure system is smeared out by the influence of the defects, leading to a distinct maximum instead. In addition, there emerges a tiny discontinuity of the specific heat at Tc(nD)T_c(n_{\rm D}). We also discuss the range of validity of the mean--field approach, and provide a more realistic estimate for the transition temperature.Comment: 11 pages, 11 ps-figures, to appear in PR

    Strongly focused light beams interacting with single atoms in free space

    Get PDF
    We construct 3-D solutions of Maxwell's equations that describe Gaussian light beams focused by a strong lens. We investigate the interaction of such beams with single atoms in free space and the interplay between angular and quantum properties of the scattered radiation. We compare the exact results with those obtained with paraxial light beams and from a standard input-output formalism. We put our results in the context of quantum information processing with single atoms.Comment: 9 pages, 9 figure

    Revival of the spin-Peierls transition in Cu_xZn_(1-x)GeO_3 under pressure

    Get PDF
    Pressure and temperature dependent susceptibility and Raman scattering experiments on single crystalline Cu_xZn_(1-x)GeO_3 have shown an unusually strong increase of the spin-Peierls phase transition temperature upon applying hydrostatic pressure. The large positive pressure coefficient (7.5 K/GPa) - almost twice as large as for the pure compound (4.5 K/GPa) - is interpreted as arising due to an increasing magnetic frustration which decreases the spin-spin correlation length, and thereby weakens the influence of the non-magnetic Zn-substitution.Comment: LaTeX, 15 pages, 5 eps figures, Phys. Rev. B, to appea

    Magnetic and Charge Correlations in La{2-x-y}Nd_ySr_xCuO_4: Raman Scattering Study

    Full text link
    Two aspects in connection with the magnetic properties of La_{2-x-y}Nd_ySr_xCuO_4 single crystals are discussed. The first is related to long wavelength magnetic excitations in x = 0, 0.01, and 0.03 La_{2-x}Sr_xCuO_4 detwinned crystals as a function of doping, temperature and magnetic field. Two magnetic modes were observed within the AF region of the phase diagram. The one at lower energies was identified with the spin-wave gap induced by the antisymmetric DM interaction and its anisotropic properties in magnetic field could be well explained using a canonical form of the spin Hamiltonian. A new finding was a magnetic field induced mode whose dynamics allowed us to discover a spin ordered state outside the AF order which was shown to persist in a 9 T field as high as 100 K above the N\'eel temperature T_N for x = 0.01. For these single magnon excitations we map out the Raman selection rules in magnetic fields and demonstrate that their temperature dependent spectral weight is peaked at the N\'eel temperature. The second aspect is related to phononic and magnetic Raman scattering in La_{2-x-y}Nd_ySr_xCuO_4 with three doping concentrations: x = 1/8, y = 0; x = 1/8, y = 0.4; and x = 0.01, y = 0. We observed that around 1/8 Sr doping and independent of Nd concentration there exists substantial disorder in the tilt pattern of the CuO_6 octahedra in both the orthorhombic and tetragonal phases which persist down to 10 K and are coupled to bond disorder in the cation layers. The weak magnitude of existing charge/spin modulations in the Nd doped structure did not allow us to detect specific Raman signatures on lattice dynamics or two-magnon scattering around 2200 cm-1.Comment: 26 pages, 22 figure

    Differential Geometry Based Multiscale Models

    Full text link
    corecore