77 research outputs found
Electrical characterization Of SiGe thin films
An apparatus for measuring electrical resistivity and Hall coefficient on both thin films and bulk material over a temperature range of 300K to 1300K has been built. A unique alumina fixture, with four molybdenum probes, allows arbitrarily shaped samples, up to 2.5 cm diameter, to be measured using van der Pauw's method. The system is fully automated and is constructed with commercially available components. Measurements of the electrical properties of doped and undoped Si-Ge thin films, grown by liquid phase epitaxy reported here, are to illustrate the capabilities of the apparatus
Lanthanum Telluride: Mechanochemical Synthesis of a Refractory Thermoelectric Material
Recent experimental work on lanthanum telluride has confirmed its significant potential as an n-type material for high temperature thermoelectric (TE) power generation application. The phase of interest, La3−xTe4, has a Th3P4 defect structure where x is the lanthanum vacancy with values ranging between 0 and 1/3. Thermoelectric properties change rapidly with x since the carrier concentration, n, is proportional to the (1−3x) parameter. Controlling the Te to La stoichiometry in lanthanum telluride is thus vital to achieving the optimum self-doping level for the highest dimensionless figure of merit ZT value. We report on a significant improvement in reproducibly preparing this refractory compound over prior lengthy and unwieldy high temperature experimental techniques developed in the 1980's. Mechanochemical processes are utilized to synthesize precise stoichiometries of lanthanum telluride at room temperature, enabling improved characterization, analysis and modeling of its transport properties as a function of the number of La vacancies. We report TE properties for a large range of the allowed compositions, with ZT values greater than 1.0 obtained at 1275 K for several compositions. In addition to stoichiometric optimization within the pure compound, chemical substitutions can enhance performance by decreasing the lattice thermal conductivity and tuning the electrical properties for maximum ZT values at lower temperatures; preliminary studies indicate that the addition of ytterbium increases ZT. Some properties pertaining to device development are discussed. Specifically, lanthanum telluride has a low sublimation rate, and a coefficient of thermal expansion that closely matches a p-type rare earth compound analog (the Yb14MnSb11 Zintl compound)
Optimizing Thermoelectric Efficiency in La_(3−x)Te_4 via Yb Substitution
A low temperature, solid state synthesis technique has enabled the production of homogeneous samples of La_(3−x−y)Yb_yTe_4. This allows the substitution of divalent Yb to be utilized to optimize the thermoelectric performance in lanthanum telluride. The addition of Yb^(2+) changes the electrical transport properties in a manner that can be well understood using valence counting rules and a corresponding change in the Fermi energy. The substitution of Yb^(2+) for La^(3+) results in a threefold finer control over the carrier density n, thus allowing the optimum n ~ 0.3 × 10^(21) cm^(−3) to be both predicted and prepared. The net result is an improvement in thermoelectric efficiency, with zT reaching ~ 1.2 at 1273 K
High performance p-type thermoelectric materials and methods of preparation
The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4-xAxSb3-yBy wherein 0?x?4, A is a transition metal, B is a pnicogen, and 0?y?3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method
Thermoelectric Air/Soil Energy-Harvesting Device
A proposed thermoelectric device would exploit natural temperature differences between air and soil to harvest small amounts of electric energy. Because the air/soil temperature difference fluctuates between nighttime and daytime, it is almost never zero, and so there is almost always some energy available for harvesting. Unlike photovoltaic cells, the proposed device could operate in the absence of sunlight. Unlike a Stirling engine, which could be designed to extract energy from the air/soil temperature difference, the proposed device would contain no moving parts. The main attractive feature of the proposed device would be high reliability. In a typical application, this device would be used for low-power charging of a battery that would, in turn, supply high power at brief, infrequent intervals for operating an instrumentation package containing sensors and communication circuits. The device (see figure) would include a heat exchanger buried in soil and connected to a heat pipe extending up to a short distance above the ground surface. A thermoelectric microgenerator (TEMG) would be mounted on top of the heat pipe. The TEMG could be of an advanced type, now under development, that could maintain high (relative to prior thermoelectric generators) power densities at small temperature differentials. A heat exchanger exposed to the air would be mounted on top of the TEMG. It would not matter whether the air was warmer than the soil or the soil warmer than the air: as long as there was a nonzero temperature difference, heat would flow through the device and electricity would be generated. A study of factors that could affect the design and operation of the device has been performed. These factors include the thermal conductances of the soil, the components of the device, the contacts between the components of the device, and the interfaces between the heat exchangers and their environments. The study included experiments that were performed on a model of the device to demonstrate feasibility. Because a TEMG suitable for this device was not available, a brass dummy component having a known thermal conductance of 1.68 W/K was substituted for the TEMG in the models to enable measurement of heat flows. The model included a water-based heat pipe 30 in. (76.2 cm) long and 1 in. (2.54 cm) in diameter, wrapped with polyethylene insulation to reduce radial heat flow. Several different side heat exchangers were tested. On the basis of the measurements, it was predicted that if a prototype of the device were equipped with a TEMG, daily temperature fluctuations would cause its output power to fluctuate between 0 and about 0.1 mW, peaking to 0.35 mW during early afternoon
High performance P-type thermoelectric materials and methods of preparation
The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn.sub.4-x A.sub.x Sb.sub.3-y B.sub.y wherein 0.ltoreq.x.ltoreq.4, A is a transition metal, B is a pnicogen, and 0.ltoreq.y.ltoreq.3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn.sub.4 Sb.sub.3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method
Integrated electroplated heat spreaders for high power semiconductor lasers
Thermal management of high power semiconductor lasers is challenging due to the low thermal conductivity of the laser substrate and the active device layers. In this work, we demonstrate the use of a microfabricated laser test device to study the thermal management of edge emitting semiconductor lasers. In this device, metallic heat spreaders of high thermal conductivity are directly electroplated on structures that mimic edge-emitting semiconductor lasers. The effects of various structural parameters of the heat spreader on the reduction of the thermal resistance of the laser test device are demonstrated both experimentally and theoretically. Without resolving to computational costive simulations, we developed two independent analytical models to verify the experimental data and further utilized them to identify the dominant thermal resistance under different laser mounting configurations. We believe our approach here of using microfabricated devices to mimic thermal characteristics of lasers as well as the developed analytical models for calculating the laser thermal resistance under different mounting configurations can potentially become valuable tools for thermal management of high power semiconductor lasers
Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium
A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions
Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation
New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications
Semiconductor apparatus utilizing gradient freeze and liquid-solid techniques
Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a substantial increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials
- …