11 research outputs found

    Direct detection of extended-spectrum beta-lactamases (CTX-M) from blood cultures by LC-MS/MS bottom-up proteomics

    Get PDF
    Rapid bacterial species identification and antibiotic susceptibility testing in positive blood cultures have an important impact on the antibiotic treatment for patients. To identify extended-spectrum beta-lactamases (ESBL) directly in positive blood culture bottles, we developed a workflow of saponin extraction followed by a bottom-up proteomics approach using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The workflow was applied to positive blood cultures with Escherichia coli and Klebsiella pneumoniae collected prospectively in two academic hospitals over a 4-month period. Of 170 positive blood cultures, 22 (12.9%) contained ESBL-positive isolates based on standard susceptibility testing. Proteomic analysis identified CTX-M ESBLs in 95% of these isolates directly in positive blood cultures, whereas no false positives were found in the non-ESBL producing positive blood cultures. The results were confirmed by molecular characterisation of beta-lactamase genes. Based on this proof-of-concept study, we conclude that LC-MS/MS-based protein analysis can directly identify extended-spectrum beta lactamases in E. coli and K. pneumoniae positive blood cultures, and could be further developed for application in routine diagnostics

    Novel applications of mass spectrometry-based proteomics in clinical microbiology

    Get PDF
    The thesis describes the development of a number of novel mass spectrometric methods for the protein analysis of Gram-negative bacteria. These applications are developed with the aim of finding new and improved diagnostic routes for the typing of bacteria and their antibiotic resistance. The research is application driven and the focus is on utilizing high-end mass spectrometric instrumentation in diagnostic clinical microbiology, in a complimentary nature to already established techniques. The Netherlands organisation of scientific research (NWO, ZonMW grant number 50-51700-98-142)LUMC / Geneeskund

    High-resolution metabolic profiling towards G-protein coupled receptors: rapid and comprehensive screening of histamine H4 receptor ligands

    No full text
    In the past years we developed high-resolution screening platforms involving separation of bioactive mixtures and on-line or at-line bioassays for a wide variety of biological targets with parallel mass spectrometric detection and identification. In the current research, we make a major step forward in the development of at-line bioassays by implementation of radioligand receptor binding and functional cellular assays to evaluate bioactvity and selectivity. We demonstrate a new platform for high-resolution metabolic profiling of lead compounds for functional activity and selectivity toward the human histamine

    Development of a profiling strategy for metabolic mixtures by combining chromatography and mass spectrometry with cell-based GPCR signaling.

    No full text
    In this study, we developed an in-line methodology that combines analytical with pharmacological techniques to characterize metabolites of human histamine H4 receptor (hH4R) ligands. Liquid chromatographic separation of metabolic mixtures is coupled to high-resolution fractionation into 96- or 384-well plates and directly followed by a cell-based reporter gene assay to measure receptor signaling. The complete methodology was designed, optimized, validated, and ultimately miniaturized into a high-density well plate format. Finally, the methodology was demonstrated in a metabolic profiling setting for three hH4R lead compounds and the drug clozapine. This new methodology comprises integrated analytical separations, mass spectrometry, and a cell-based signal transduction-driven reporter gene assay that enables the implementation of comprehensive metabolic profiling earlier in the drug discovery process. © 2012 Society for Laboratory Automation and Screening

    Typing Pseudomonas aeruginosa Isolates with Ultrahigh Resolution MALDI-FTICR Mass Spectrometry

    No full text
    The introduction of standardized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platforms in the medical microbiological practice has revolutionized the way microbial species identification is performed on a daily basis. To a large extent, this is due to the ease of operation. Acquired spectra are compared to profiles obtained from cultured colonies present in a reference spectra database. It is fast and reliable, and costs are low compared to previous diagnostic approaches. However, the low resolution and dynamic range of the discrimination of different bacterial strains, as achieved with MALDI-TOF profiles have shown limited applicability for the typing based on genetic markers. This is pivotal in cases where certain strains are associated with, e.g., virulence or antibiotic resistance. Ultrahigh resolution MALDI-FTICR MS allows the measurement of small proteins at isotopic resolution and can be used to analyze complex mixtures with increased dynamic range and higher precision than MALDI-TOF MS, while still generating results in a similar time frame. Here, we propose to use ultrahigh resolution 15T MALDI-Fourier transform ion cyclotron resonance (FTICR) MS to discriminate clinically relevant bacterial strains after species identification performed by MALDI-TOF MS. We used a collection of well characterized Pseudomonas aeruginosa strains, featuring distinct antibiotic resistance profiles, and isolates obtained during hospital outbreaks. Following cluster analysis based on amplification fragment length polymorphism (AFLP), these strains were grouped into three different clusters. The same clusters were obtained using protein profiles generated by MALDI-FTICR MS. Subsequent intact protein analysis by electrospray ionization (ESI)-collision-induced dissociation (CID)-FTICR MS was applied to identify protein isoforms that contribute to the separation of the different clusters, illustrating the additional advantage of this analytical platform.Afdeling Klinische Chemie en Laboratoriumgeneeskunde (AKCL
    corecore