20 research outputs found

    Exclusive quarkonium photoproduction in AA+AA UPCs at the LHC in NLO pQCD

    Full text link
    We present the first study of coherent exclusive quarkonium (J/ψJ/\psi, Υ\Upsilon) photoproduction in ultraperipheral nucleus-nucleus collisions (UPCs) at the LHC in the framework of collinear factorization and next-to-leading order (NLO) perturbative QCD (pQCD). We make NLO predictions for the J/ψJ/\psi and Υ\Upsilon rapidity distributions for lead (Pb) and oxygen (O) beams, and quantify their dependence on the factorization/renormalization scale, nuclear parton distribution functions (PDFs) and their uncertainties, and on differences between nuclear PDFs and generalized parton distribution functions (GPDs). We show that within the PDF-originating uncertainties our approach provides a good description of the available J/ψJ/\psi photoproduction data in Pb+Pb UPCs at the LHC but that the scale uncertainty is significant. We demonstrate that at NLO pQCD the quark contributions are important in the J/ψJ/\psi case but that gluons clearly dominate the Υ\Upsilon cross sections. We also study how the scale dependence could be tamed by considering O+O/Pb+Pb ratios of the exclusive J/ψJ/\psi UPC cross sections, and how HERA and p+p/Pb LHC data can help in obtaining better-controlled NLO predictions in the Υ\Upsilon case.Comment: 6 pages, 5 figures, contributed talk by K.J.E. at the 11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Hard Probes 2023, 26-31 March 2023, Aschaffenburg, German

    Computational Modeling for Cardiac Resynchronization Therapy

    Get PDF

    Percutaneous revascularization for ischemic left ventricular dysfunction: Cost-effectiveness analysis of the REVIVED-BCIS2 trial

    Get PDF
    BACKGROUND: Percutaneous coronary intervention (PCI) is frequently undertaken in patients with ischemic left ventricular systolic dysfunction. The REVIVED (Revascularization for Ischemic Ventricular Dysfunction)-BCIS2 (British Cardiovascular Society-2) trial concluded that PCI did not reduce the incidence of all-cause death or heart failure hospitalization; however, patients assigned to PCI reported better initial health-related quality of life than those assigned to optimal medical therapy (OMT) alone. The aim of this study was to assess the cost-effectiveness of PCI+OMT compared with OMT alone. METHODS: REVIVED-BCIS2 was a prospective, multicenter UK trial, which randomized patients with severe ischemic left ventricular systolic dysfunction to either PCI+OMT or OMT alone. Health care resource use (including planned and unplanned revascularizations, medication, device implantation, and heart failure hospitalizations) and health outcomes data (EuroQol 5-dimension 5-level questionnaire) on each patient were collected at baseline and up to 8 years post-randomization. Resource use was costed using publicly available national unit costs. Within the trial, mean total costs and quality-adjusted life-years (QALYs) were estimated from the perspective of the UK health system. Cost-effectiveness was evaluated using estimated mean costs and QALYs in both groups. Regression analysis was used to adjust for clinically relevant predictors. RESULTS: Between 2013 and 2020, 700 patients were recruited (mean age: PCI+OMT=70 years, OMT=68 years; male (%): PCI+OMT=87, OMT=88); median follow-up was 3.4 years. Over all follow-ups, patients undergoing PCI yielded similar health benefits at higher costs compared with OMT alone (PCI+OMT: 4.14 QALYs, £22 352; OMT alone: 4.16 QALYs, £15 569; difference: −0.015, £6782). For both groups, most health resource consumption occurred in the first 2 years post-randomization. Probabilistic results showed that the probability of PCI being cost-effective was 0. CONCLUSIONS: A minimal difference in total QALYs was identified between arms, and PCI+OMT was not cost-effective compared with OMT, given its additional cost. A strategy of routine PCI to treat ischemic left ventricular systolic dysfunction does not seem to be a justifiable use of health care resources in the United Kingdom

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Predictions for exclusive Υ\Upsilon photoproduction in ultraperipheral Pb+Pb{\rm Pb}+{\rm Pb} collisions at the LHC at next-to-leading order in perturbative QCD

    No full text
    International audienceWe present predictions for the rapidity-differential cross sections of exclusive Υ\Upsilon photoproduction in ultraperipheral collisions (UPCs) of lead ions at the Large Hadron Collider (LHC). We work in the framework of collinear factorization at next-to-leading order (NLO) in perturbative QCD, modeling the generalized parton distributions (GPDs) through the Shuvaev transform of nuclear parton distribution functions (nPDFs). While the effects due to the GPD modeling turn out to be small, the direct NLO predictions still carry significant nPDF-originating uncertainties and depend strongly on the choices of the factorization and renormalization scales. To tame the scale dependence and to account for the fact that the NLO calculations generally underpredict the photoproduction measurements on protons, we also present alternative, data-driven predictions. In this approach the underlying photoproduction cross sections on lead are found by combining their nuclear modifications calculated at NLO with the measured photoproduction cross sections on protons. The data-driven strategy reduces the uncertainties associated with the scale choices, and essentially eliminates the effects of GPD modeling thereby leaving the cross sections sensitive mainly to the input nPDFs. Our estimates indicate that the process is measurable in Pb+Pb{\rm Pb}+{\rm Pb} collisions at the LHC

    Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume

    No full text
    Background— Extracellular matrix expansion is a key element of ventricular remodeling and a potential therapeutic target. Cardiovascular magnetic resonance (CMR) T 1 -mapping techniques are increasingly used to evaluate myocardial extracellular volume (ECV); however, the most widely applied methods are without histological validation. Our aim was to perform comprehensive validation of (1) dynamic-equilibrium CMR (DynEq-CMR), where ECV is quantified using hematocrit-adjusted myocardial and blood T 1 values measured before and after gadolinium bolus; and (2) isolated measurement of myocardial T 1 , used as an ECV surrogate. Methods and Results— Whole-heart histological validation was performed using 96 tissue samples, analyzed for picrosirius red collagen volume fraction, obtained from each of 16 segments of the explanted hearts of 6 patients undergoing heart transplantation who had prospectively undergone CMR before transplantation (median interval between CMR and transplantation, 29 days). DynEq-CMR–derived ECV was calculated from T 1 measurements made using a modified Look-Locker inversion recovery sequence before and 10 and 15 minutes post contrast. In addition, ECV was measured 2 to 20 minutes post contrast in 30 healthy volunteers. There was a strong linear relationship between DynEq-CMR–derived ECV and histological collagen volume fraction ( P &lt;0.001; within-subject: r =0.745; P &lt;0.001; r 2 =0.555 and between-subject: r =0.945; P &lt;0.01; r 2 =0.893; for ECV calculated using 15-minute postcontrast T 1 ). Correlation was maintained throughout the entire heart. Isolated postcontrast T 1 measurement showed significant within-subject correlation with histological collagen volume fraction ( r =−0.741; P &lt;0.001; r 2 =0.550 for 15-minute postcontrast T 1 ), but between-subject correlations were not significant. DynEq-CMR–derived ECV varied significantly according to contrast dose, myocardial region, and sex. Conclusions— DynEq-CMR–derived ECV shows a good correlation with histological collagen volume fraction throughout the whole heart. Isolated postcontrast T 1 measurement is insufficient for ECV assessment. </jats:sec

    Pleistocene Glacial History of the New Zealand Subantarctic Islands

    Get PDF
    The New Zealand subantarctic islands of Auckland and Campbell, situated between the subtropical front and the Antarctic Convergence in the Pacific sector of the Southern Ocean, provide valuable terrestrial records from a globally important climatic region. Whilst the islands show clear evidence of past glaciation, the timing and mechanisms behind Pleistocene environmental and climate changes remain uncertain. Here we present a multidisciplinary study of the islands-including marine and terrestrial geomorphological surveys, extensive analyses of sedimentary sequences, a comprehensive dating programme, and glacier flow line modelling-to investigate multiple phases of glaciation across the islands. We find evidence that the Auckland Islands hosted a small ice cap 384 000±26 000 years ago (384±26 ka), most likely during Marine Isotope Stage 10, a period when the subtropical front was reportedly north of its present-day latitude by several degrees, and consistent with hemispheric-wide glacial expansion. Flow line modelling constrained by field evidence suggests a more restricted glacial period prior to the LGM that formed substantial valley glaciers on the Campbell and Auckland Islands around 72-62 ka. Despite previous interpretations that suggest the maximum glacial extent occurred in the form of valley glaciation at the Last Glacial Maximum (LGM; ∼ 21 ka), our combined approach suggests minimal LGM glaciation across the New Zealand subantarctic islands and that no glaciers were present during the Antarctic Cold Reversal (ACR; ∼ 15-13 ka). Instead, modelling implies that despite a regional mean annual air temperature depression of ∼ 5 °C during the LGM, a combination of high seasonality and low precipitation left the islands incapable of sustaining significant glaciation. We suggest that northwards expansion of winter sea ice during the LGM and subsequent ACR led to precipitation starvation across the middle to high latitudes of the Southern Ocean, resulting in restricted glaciation of the subantarctic islands
    corecore