27 research outputs found
A Coalitional Model Predictive Control Approach for Heterogeneous Cellular Networks
Heterogeneous cellular networks (HetNets) are large-scale systems that comprise numerous base stations interacting with a significant number of users of diverse types. Finding a trade-off between energy consumption and quality of service is one of the major challenges in these networks. To deal with this issue, a coalitional model predictive control (MPC) approach is proposed for a HetNet powered by renewable power sources, and compared in simulation with the traditional best-signal level mechanism and the centralized MPC method. Furthermore, other key performance indicators associated with grid consumption such as the number of served users and transmission rates are also evaluated
Energy Efficiency of Hybrid-Power HetNets: A Population-like Games Approach
In this paper, a distributed control scheme based on population games is proposed. The controller is in charge of dealing with the energy consumption problem in a Heterogeneous Cellular Network (HetNet) powered by hybrid energy sources (grid and renewable energy) while guaranteeing appropriate quality of service (QoS) level at the same time. Unlike the conventional approach in population games, it considers both atomicity and non-anonymity. Simulation results show that the proposed population-games approach reduces grid consumption by up to about 12% compared to the traditional best-signal level association policy.U.S. Air Force Office of Scientific Research FA9550-17-1-0259Ministerio de Cultura y Deporte DPI2016-76493-C3-3-RMinisterio de EconomÃa y Empresa DPI2017-86918-