3 research outputs found

    Relativistic electron beams accelerated by an interplanetary shock

    Full text link
    Collisionless shock waves have long been considered amongst the most prolific particle accelerators in the universe. Shocks alter the plasma they propagate through and often exhibit complex evolution across multiple scales. Interplanetary (IP) traveling shocks have been recorded in-situ for over half a century and act as a natural laboratory for experimentally verifying various aspects of large-scale collisionless shocks. A fundamentally interesting problem in both helio and astrophysics is the acceleration of electrons to relativistic energies (more than 300 keV) by traveling shocks. This letter presents first observations of field-aligned beams of relativistic electrons upstream of an IP shock observed thanks to the instrumental capabilities of Solar Orbiter. This study aims to present the characteristics of the electron beams close to the source and contribute towards understanding their acceleration mechanism. On 25 July 2022, Solar Orbiter encountered an IP shock at 0.98 AU. The shock was associated with an energetic storm particle event which also featured upstream field-aligned relativistic electron beams observed 14 minutes prior to the actual shock crossing. The distance of the beam's origin was investigated using a velocity dispersion analysis (VDA). Peak-intensity energy spectra were anaylzed and compared with those obtained from a semi-analytical fast-Fermi acceleration model. By leveraging Solar Orbiter's high-time resolution Energetic Particle Detector (EPD), we have successfully showcased an IP shock's ability to accelerate relativistic electron beams. Our proposed acceleration mechanism offers an explanation for the observed electron beam and its characteristics, while we also explore the potential contributions of more complex mechanisms.Comment: Main text: 6 pages, 2 figures. Supplementary material: 6 pages, 7 figure

    Relativistic electron beams accelerated by an interplanetary shock

    No full text
    International audienceCollisionless shock waves have long been considered amongst the most prolific particle accelerators in the universe. Shocks alter the plasma they propagate through and often exhibit complex evolution across multiple scales. Interplanetary (IP) traveling shocks have been recorded in-situ for over half a century and act as a natural laboratory for experimentally verifying various aspects of large-scale collisionless shocks. A fundamentally interesting problem in both helio and astrophysics is the acceleration of electrons to relativistic energies (more than 300 keV) by traveling shocks. This letter presents first observations of field-aligned beams of relativistic electrons upstream of an IP shock observed thanks to the instrumental capabilities of Solar Orbiter. This study aims to present the characteristics of the electron beams close to the source and contribute towards understanding their acceleration mechanism. On 25 July 2022, Solar Orbiter encountered an IP shock at 0.98 AU. The shock was associated with an energetic storm particle event which also featured upstream field-aligned relativistic electron beams observed 14 minutes prior to the actual shock crossing. The distance of the beam's origin was investigated using a velocity dispersion analysis (VDA). Peak-intensity energy spectra were anaylzed and compared with those obtained from a semi-analytical fast-Fermi acceleration model. By leveraging Solar Orbiter's high-time resolution Energetic Particle Detector (EPD), we have successfully showcased an IP shock's ability to accelerate relativistic electron beams. Our proposed acceleration mechanism offers an explanation for the observed electron beam and its characteristics, while we also explore the potential contributions of more complex mechanisms

    Unusually long path length for a nearly scatter-free solar particle event observed by Solar Orbiter at 0.43 au

    No full text
    Context. After their acceleration and release at the Sun, solar energetic particles (SEPs) are injected into the interplanetary medium and are bound to the interplanetary magnetic field (IMF) by the Lorentz force. The expansion of the IMF close to the Sun focuses the particle pitch-angle distribution, and scattering counteracts this focusing. Solar Orbiter observed an unusual solar particle event on 9 April 2022 when it was at 0.43 astronomical units (au) from the Sun. Aims. We show that the inferred IMF along which the SEPs traveled was about three times longer than the nominal length of the Parker spiral and provide an explanation for this apparently long path. Methods. We used velocity dispersion analysis (VDA) information to infer the spiral length along which the electrons and ions traveled and infer their solar release times and arrival direction. Results. The path length inferred from VDA is approximately three times longer than the nominal Parker spiral. Nevertheless, the pitch-angle distribution of the particles of this event is highly anisotropic, and the electrons and ions appear to be streaming along the same IMF structures. The angular width of the streaming population is estimated to be approximately 30 degrees. The highly anisotropic ion beam was observed for more than 12 h. This may be due to the low level of fluctuations in the IMF, which in turn is very probably due to this event being inside an interplanetary coronal mass ejection The slow and small rotation in the IMF suggests a flux-rope structure. Small flux dropouts are associated with very small changes in pitch angle, which may be explained by different flux tubes connecting to different locations in the flare region. Conclusions. The unusually long path length along which the electrons and ions have propagated virtually scatter-free together with the short-term flux dropouts offer excellent opportunities to study the transport of SEPs within interplanetary structures. The 9 April 2022 solar particle event offers an especially rich number of unique observations that can be used to limit SEP transport models
    corecore