22,364 research outputs found
Effect of blade geometry on the aerodynamic loads produced by vertical-axis wind turbines
Accurate aerodynamic modelling of vertical-axis wind turbines poses a significant challenge. The rotation of the turbine induces large variations in the angle of attack of its blades that can manifest as dynamic stall. In addition, interactions between the blades of the turbine and the wake that they produce can result in impulsive changes to the aerodynamic loading. The Vorticity Transport Model has been used to simulate the aerodynamic performance and wake dynamics of three different vertical-axis wind turbine configurations. It is known that vertical-axis turbines with either straight or curved blades deliver torque to their shaft that fluctuates at the blade passage frequency of the rotor. In contrast, a turbine with helically twisted blades delivers a relatively steady torque to the shaft. In this article, the interactions between helically twisted blades and the vortices within their wake are shown to result in localized perturbations to the aerodynamic loading on the rotor that can disrupt the otherwise relatively smooth power output that is predicted by simplistic aerodynamic tools that do not model the wake to sufficient fidelity. Furthermore, vertical-axis wind turbines with curved blades are shown to be somewhat more susceptible to local dynamic stall than turbines with straight blades
On the Spatial Distribution of Hard X-Rays from Solar Flare Loops
The aim of this paper is to investigate the spatial structure of the
impulsive phase hard X-ray emission from solar flares. This work is motivated
by the YOHKOH and the forthcoming HESSI observations. Summarizing past results,
it is shown that the transport effects can account for the observations by
inhomogeneous loops where there is a strong field convergence and/or density
enhancement at the top of the flaring loop. Scattering by plasma turbulence at
the acceleration site or pancake type pitch angle distribution of the
accelerated electrons can also give rise to enhanced emission at the loop tops.
These could be a natural consequence of acceleration by plasma waves. This
paper considers a general case of stochastic scattering and acceleration that
leads to an isotropic pitch angle distribution and an enhanced emission from
the loop tops or the acceleration site.
Following the formalism developed in earlier papers the strength and the
spectrum of the radiation expected from the acceleration site and the foot
points are evaluated and their dependence on the parameters describing the
acceleration process and the flare plasma are determined. The theoretical ratio
of these two intensities and relative values of their spectral indices are
compared with the YOHKOH observations, demonstrating that the above mentioned
parameters can be constrained with such observations. It is shown that future
high spatial and spectral resolution observations, for example those expected
from HESSI, can begin to distinguish between different models and constrain
their parameters.Comment: 37 pages with 20 figures. Accepted for publication in ApJ
http://www.astronomy.stanford.ed
Temperature dependent anisotropy of the penetration depth and coherence length in MgB$_2
We report measurements of the temperature dependent anisotropies
( and ) of both the London penetration depth
and the upper critical field of MgB. Data for
was obtained from measurements of
and on a single crystal sample using a tunnel diode
oscillator technique. was
deduced from field dependent specific heat measurements on the same sample.
and have opposite temperature dependencies, but
close to tend to a common value (). These results are in good agreement with theories
accounting for the two gap nature of MgBComment: 4 pages with figures (New version
IRIS Observations of the Mg II h & k Lines During a Solar Flare
The bulk of the radiative output of a solar flare is emitted from the
chromosphere, which produces enhancements in the optical and UV continuum, and
in many lines, both optically thick and thin. We have, until very recently,
lacked observations of two of the strongest of these lines: the Mg II h & k
resonance lines. We present a detailed study of the response of these lines to
a solar flare. The spatial and temporal behaviour of the integrated
intensities, k/h line ratios, line of sight velocities, line widths and line
asymmetries were investigated during an M class flare (SOL2014-02-13T01:40).
Very intense, spatially localised energy input at the outer edge of the ribbon
is observed, resulting in redshifts equivalent to velocities of ~15-26km/s,
line broadenings, and a blue asymmetry in the most intense sources. The
characteristic central reversal feature that is ubiquitous in quiet Sun
observations is absent in flaring profiles, indicating that the source function
increases with height during the flare. Despite the absence of the central
reversal feature, the k/h line ratio indicates that the lines remain optically
thick during the flare. Subordinate lines in the Mg II passband are observed to
be in emission in flaring sources, brightening and cooling with similar
timescales to the resonance lines. This work represents a first analysis of
potential diagnostic information of the flaring atmosphere using these lines,
and provides observations to which synthetic spectra from advanced radiative
transfer codes can be compared.Comment: 12 pages, 14 figures, Accepted for publication in Astronomy and
Astrophysic
TOTAL ECONOMIC VALUATION OF STREAM RESTORATION USING INTERNET AND MAIL SURVEYS
The economic value of restoring Deckers Creek in Monongalia and Preston Counties of West Virginia was determined from mail, internet and personal interview surveys. Multi-attribute, choice experiments were conducted and nested logit models were estimated to derive the economic values of full restoration for three attributes of this creek: aquatic life, swimming, and scenic quality. The relative economic values of attributes were: aquatic life > scenic quality ~ swimming. These economic values imply that respondents had the highest value for aquatic life when fully restoring Deckers Creek to a sustainable fishery rather than "put and take" fishery that can not sustain a fish population (defined as moderate restoration for aquatic life). The consumer surplus estimates for full restoration of all three attributes ranged between 16 per month per household. Potential stream users (anglers) had the largest consumer surplus gain from restoration while non-angler respondents had the lowest. When the consumer surplus estimates were aggregated up to the entire watershed population, the benefit from restoration of Deckers Creek was estimated to be about $1.9 million annually. This benefit does not account for any economic values from partial stream restoration. Based upon log likelihood tests of the nested logit models, two sub-samples of the survey population (the general population and stream users) were found to be from the same population. Thus, restoration choices by stream users may be representative of the watershed population, although the sample size of stream users was small in this study.Resource /Energy Economics and Policy,
Destruction of chain-superconductivity in YBa_2Cu_4O_8 in a weak magnetic field
We report measurements of the temperature dependent components of the
magnetic penetration depth {\lambda}(T) in single crystal samples of
YBa_2Cu_4O_8 using a radio frequency tunnel diode oscillator technique. We
observe a downturn in {\lambda}(T) at low temperatures for currents flowing
along the b and c axes but not along the a axis. The downturn in {\lambda}_b is
suppressed by a small dc field of ~0.25 T. This and the zero field anisotropy
of {\lambda}(T) likely result from proximity induced superconducting on the CuO
chains, however we also discuss the possibility that a significant part of the
anisotropy might originate from the CuO2 planes.Comment: 5 page
Classical noise and flux: the limits of multi-state atom lasers
By direct comparison between experiment and theory, we show how the classical
noise on a multi-state atom laser beam increases with increasing flux. The
trade off between classical noise and flux is an important consideration in
precision interferometric measurement. We use periodic 10 microsecond
radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein
condensate. The resulting atom laser beam has suprising structure which is
explained using three dimensional simulations of the five state
Gross-Pitaevskii equations.Comment: 4 pages, 3 figure
- âŠ