2,435 research outputs found
Video Guidance, Landing, and Imaging system (VGLIS) for space missions
The feasibility of an autonomous video guidance system that is capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was demonstrated. The system was breadboarded and "flown" on a physical simulator consisting of a control panel and monitor, a dynamic simulator, and a PDP-9 computer. The breadboard VGLIS consisted of an image dissector camera and the appropriate processing logic. Results are reported
Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data
In this paper we study a Tikhonov-type method for ill-posed nonlinear
operator equations \gdag = F(
ag) where \gdag is an integrable,
non-negative function. We assume that data are drawn from a Poisson process
with density t\gdag where may be interpreted as an exposure time. Such
problems occur in many photonic imaging applications including positron
emission tomography, confocal fluorescence microscopy, astronomic observations,
and phase retrieval problems in optics. Our approach uses a
Kullback-Leibler-type data fidelity functional and allows for general convex
penalty terms. We prove convergence rates of the expectation of the
reconstruction error under a variational source condition as both
for an a priori and for a Lepski{\u\i}-type parameter choice rule
Proton-induced noise in digicons
The Space Telescope, which carries four Digicons, will pass several times per day through a low-altitude portion of the radiation belt called the South Atlantic Anomaly. This is expected to create interference in what is otherwise anticipated to be a noise-free device. Two essential components of the Digicon, the semiconductor diode array and the UV transmitting window, generate noise when subjected to medium-energy proton radiation, a primary component of the belt. These trapped protons, having energies ranging from 2 to 400 Mev and fluences at the Digicon up to 4,000 P+/sec-sq cm, pass through both the window and the diode array, depositing energy in each. In order to evaluate the effect of these protons, engineering test models of Digicon tubes to be flown on the High Resolution Spectrograph were irradiated with low-flux monoenergetic proton beams at the University of Maryland cyclotron. Electron-hole pairs produced by the protons passing through the diodes or the surrounding bulk caused a background count rate. This is the result of holes diffusing over a distance of many diode spacings, causing counts to be triggered simultaneously in the output circuits of several adjacent diodes. Pulse-height spectra of these proton-induced counts indicate that most of the bulk-related counts overlap the single photoelectron peak. A geometrical model will be presented of the charge collection characteristics of the diode array that accounts for most of the observed effects
Partial Cross-Sections And Photoelectron Angular-Distributions In The Region Of The 4S- 5P And 5S- 6P Resonances In Krypton And Xenon
Using synchrotron radiation and photoelectron spectrometry, we have examined the 4s4p (6)5p resonance region in krypton and the 5s5p (6)6p resonance region in xenon. We have obtained partial and total cross sections, intensity ratios, and photoelectron angular distribution parameters for the energy regions 20.6-21.5 eV in xenon and 24.6-25.3 eV in krypton. We also report Shore parameters for all cross-section data taken. In addition to the anticipated single-electron transition, we clearly resolve features attributable to two-electron transitions in both species. Characteristics of these autoionizing states may differ considerably in the two available exit channels
Magneto-optical Trapping of Cadmium
We report the laser-cooling and confinement of Cd atoms in a magneto-optical
trap, and characterize the loading process from the background Cd vapor. The
trapping laser drives the 1S0-1P1 transition at 229 nm in this two-electron
atom and also photoionizes atoms directly from the 1P1 state. This
photoionization overwhelms the other loss mechanisms and allows a direct
measurement of the photoionization cross section, which we measure to be
2(1)x10^(-16)cm^(2) from the 1P1 state. When combined with nearby laser-cooled
and trapped Cd^(+) ions, this apparatus could facilitate studies in ultracold
interactions between atoms and ions.Comment: 8 pages, 11 figure
Necessary conditions for variational regularization schemes
We study variational regularization methods in a general framework, more
precisely those methods that use a discrepancy and a regularization functional.
While several sets of sufficient conditions are known to obtain a
regularization method, we start with an investigation of the converse question:
How could necessary conditions for a variational method to provide a
regularization method look like? To this end, we formalize the notion of a
variational scheme and start with comparison of three different instances of
variational methods. Then we focus on the data space model and investigate the
role and interplay of the topological structure, the convergence notion and the
discrepancy functional. Especially, we deduce necessary conditions for the
discrepancy functional to fulfill usual continuity assumptions. The results are
applied to discrepancy functionals given by Bregman distances and especially to
the Kullback-Leibler divergence.Comment: To appear in Inverse Problem
- âŠ