17 research outputs found

    Surface-Initiated Atom Transfer Radical Polymerization for the Preparation of Well-Defined Organic鈥揑norganic Hybrid Nanomaterials

    No full text
    Surface-initiated atom transfer radical polymerization (SI-ATRP) is a powerful tool that allows for the synthesis of organic–inorganic hybrid nanomaterials with high potential applications in many disciplines. This review presents synthetic achievements and modifications of nanoparticles via SI-ATRP described in literature last decade. The work mainly focuses on the research development of silica, gold and iron polymer-grafted nanoparticles as well as nature-based materials like nanocellulose. Moreover, typical single examples of nanoparticles modification, i.e., ZnO, are presented. The organic–inorganic hybrid systems received according to the reversible deactivation radical polymerization (RDRP) approach with drastically reduced catalyst complex concentration indicate a wide range of applications of materials including biomedicine and microelectronic devices

    Working electrode geometry effect : a new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions

    No full text
    First reports concerning the use of atom transfer radical polymerization (ATRP) to prepare patterned hybrid materials appeared more than 20 years ago. However, the development of new methods of preparation of patterned materials is still at the forefront of scientific interest. In this paper, we describe surface-initiated simplified electrochemically mediated ATRP (SI-seATRP) under constant current conditions, used for the fabrication of patterned polymer brushes under ambient conditions at the microliter scale. It is shown that appropriate selection of surface and shape of the working electrode (WE) allows handling the polymerization of (meth)acrylates, acrylates and acrylamides directly on the laboratory bench. The complete procedure includes a minimum amount of reagents and an optimal amount of a catalytic complex equal to 300 ppm. The use of a platinum wire mesh electrode guarantees obtaining polymers forming unique patterns. The observed patterning phenomenon could be explained by the mechanism of electrochemically mediated ATRP (eATRP) and is directly related to the working electrode geometry, and diffusion of the catalyst CuIBr/TPMA (where TPMA: tris(2-pyridylmethyl)amine)
    corecore