231 research outputs found

    Translational switching from growth to defense – a common role for TOR in plant and mammalian immunity?

    Get PDF
    Characterization of mRNA populations associatedwith the translational machinery (translatome)is shedding light on the molecular mechanisms ofplant environmental responses. The work presentedby Meteignier et  al. (2017) describes how selectivechanges in translation modulate the transitionfrom growth to defense responses in Arabidopsis,revealing new similarities between plant and animalimmunity.Fil: Zanetti, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentin

    Translational switching from growth to defense - a common role for TOR in plant and mammalian immunity?

    Get PDF
    Characterization of mRNA populations associated with the translational machinery (translatome) is shedding light on the molecular mechanisms of plant environmental responses. The work presented by Meteignier et al. (2017) describes how selective changes in translation modulate the transition from growth to defense responses in Arabidopsis, revealing new similarities between plant and animal immunity.Facultad de Ciencias Exacta

    Auxin Response Factor 2 (ARF2), ARF3, and ARF4 Mediate Both Lateral Root and Nitrogen Fixing Nodule Development in Medicago truncatula

    Get PDF
    Auxin Response Factors (ARFs) constitute a large family of transcription factors that mediate auxin-regulated developmental programs in plants. ARF2, ARF3, and ARF4 are post-transcriptionally regulated by the microRNA390 (miR390)/trans-acting small interference RNA 3 (TAS3) module through the action of TAS3-derived trans-acting small interfering RNAs (ta-siRNA). We have previously reported that constitutive activation of the miR390/TAS3 pathway promotes elongation of lateral roots but impairs nodule organogenesis and infection by rhizobia during the nitrogen-fixing symbiosis established between Medicago truncatula and its partner Sinorhizobium meliloti. However, the involvement of the targets of the miR390/TAS3 pathway, i.e., MtARF2, MtARF3, MtARF4a, and MtARF4b, in root development and establishment of the nitrogen-fixing symbiosis remained unexplored. Here, promoter:reporter fusions showed that expression of both MtARF3 and MtARF4a was associated with lateral root development; however, only the MtARF4a promoter was active in developing nodules. In addition, up-regulation of MtARF2, MtARF3, and MtARF4a/b in response to rhizobia depends on Nod Factor perception. We provide evidence that simultaneous knockdown of MtARF2, MtARF3, MtARF4a, and MtARF4b or mutation in MtARF4a impaired nodule formation, and reduced initiation and progression of infection events. Silencing of MtARF2, MtARF3, MtARF4a, and MtARF4b altered mRNA levels of the early nodulation gene nodulation signaling pathway 2 (MtNSP2). In addition, roots with reduced levels of MtARF2, MtARF3, MtARF4a, and MtARF4b, as well as arf4a mutant plants exhibited altered root architecture, causing a reduction in primary and lateral root length, but increasing lateral root density. Taken together, our results suggest that these ARF members are common key players of the morphogenetic programs that control root development and the formation of nitrogen-fixing nodules.Fil: Kirolinko, Cristina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Hobecker, Karen Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Wen, Jiangqi. Noble Research Institute LLC; Estados UnidosFil: Mysore, Kirankumar S.. Noble Research Institute LLC; Estados UnidosFil: Niebel, Andreas. Centre National de la Recherche Scientifique; Francia. Instituto National de Recherches Agronomiques; Francia. Université de Toulouse; FranciaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Zanetti, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentin

    "Ejaculatory disorders and α(1)-adrenoceptor antagonists therapy: clinical and experimental researches"

    Get PDF
    BACKGROUND: It is well known that the use of the α-adrenergic receptor antagonists in the BPH therapy may induce ejaculatory disorder. A review of clinical literature shows a greater incidence of ejaculatory disorder during the use of tamsulosin compared with alfuzosin. Anejaculation has been until now referred to retrograde ejaculation due to relaxation of prostatic and bladder neck smooth muscle tone. In a recent researches was evaluated the effect of tamsulosin and alfuzosin on rat vas deferent "in vitro", concluding that tamsulosin may "cause ejaculatory dysfunction by altering the progression and emission of sperm". An abnormal increase of contraction would be the cause of ejaculatory disorder. The aim of our paper is to compare human and rat vas deferens contractile activity and to evaluate with a clinical study if tamsulosin causes retrograde ejaculation disorder. METHODS: We have revaluated the human and rat vas deferens contractile activity in vitro according to our experience and literature. We have also performed a clinical study on 10 patients (48–72 y) affected by anejaculation. Post-coital urine was examined to search spermatozoa. RESULTS: Human and rat vas deferens activity is not comparable. Contractile activity induced by norepinephrin after tamsulosin incubation in rat prostatic vas deferens strips is similar to the contractile activity evoked by norepinephrin in human strips. Spermatozoa were found in post coital urine of 6 patients. CONCLUSION: In our opinion the treatment with tamsulosin may induce retrograde ejaculation but not other ejaculatory disorder due to abnormal sperm progression

    Insights into post-transcriptional regulation during legume-rhizobia symbiosis

    Get PDF
    During the past ten years, changes in the transcriptome have been assessed at different stages of the legume-rhizobia association by the use of DNA microarrays and, more recently, by RNA sequencing technologies. These studies allowed the identification of hundred or thousand of genes whose steadystate mRNA levels increase or decrease upon bacterial infection or in nodules as compared with uninfected roots.1-7 However, transcriptome based-approaches do not distinguish between mRNAs that are being actively translated, stored as messenger ribonucleoproteins (mRNPs) or targeted for degradation. Despite that the increase in steady-state levels of an mRNA does not necessarily correlate with an increase in abundance or activity of the encoded protein, this information has been commonly used to select genes that are candidates to play a role during nodule organogenesis or bacterial infection. Such criterion does not take into account the post-transcriptional mechanisms that contribute to the regulation of gene expression. One of such mechanisms, which has significant impact on gene expression, is the selective recruitment of mRNAs to the translational machinery. Here, we review the post-transcriptional mechanisms that contribute to the regulation of gene expression in the context of the ecological and agronomical important symbiotic interaction established between roots of legumes and the nitrogen fixing bacteria collectively known as rhizobia.8 In addition, we discuss how the development of new technologies that allow the assessment of these regulatory layers would help to understand the genetic network governing legume rhizobia symbiosis.Instituto de Biotecnologia y Biologia Molecula

    Preservation of Cavernosal Erectile Function after Soft Penile Prosthesis Implant in Peyronie's Disease: Long-Term Followup

    Get PDF
    The aim of this retrospective study is to evaluate the long-term followup of soft penile SSDA prosthesis, without plaque surgery in the treatment of Peyronie's disease. This study included 12 men with Peyronie's disease who underwent placement of a penile prosthesis. All patients were followed for at least 6 years. Prosthesis straightened the penile shaft in all cases, restoring patient sexual satisfaction. No operative or postoperative complications occurred, and no reoperations were needed. All patients have undergone further examination with basal and dynamic eco color Doppler. The findings are encouraging as the penis preserves the ability to enhance the tumescence and penile girth. We can conclude that SSDA penile prosthesis is safe and effective in Peyronie's disease

    How legumes recognize rhizobia

    Get PDF
    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria.Facultad de Ciencias Exacta

    Female-biased stranding in Magellanic penguins

    Get PDF
    Magellanic penguins (Spheniscus magellanicus) have been reported to become stranded along the coasts of northern Argentina, Uruguay and southern Brazil during the austral winter 1, 2, 3. This location is more than a thousand kilometers distant from their northernmost breeding colony in northern Patagonia. Curiously, females typically outnumber males at stranding sites (approximately three females per male) [2]. To date, no conspicuous sex differences have been reported in their migratory movements [3], although records are lacking during the peak stranding season. Consequently, the reason(s) for the female-biased stranding remain unknown, despite the growing necessity for understanding their behavior outside the breeding season [3]. We recorded at-sea distributions of Magellanic penguins throughout the non-breeding period using animal-borne data loggers and found that females reached more northern areas than males and did not dive as deep during winter (Figure 1). Such sexual differences in spatial domains might be driven by mechanisms related to sexual size dimorphism, such as the avoidance of intraspecific competition for food resources [4], differences in thermal habitat preference [5] or differences in the ability to withstand the northward-flowing ocean circulation [6]. Individual penguins that winter in northern areas are likely to be at greater risk of natural [7] and anthropogenic threats [8], and probably more so in females, as more females than males tend to frequent areas closer to the sites where penguins strand. Our results highlight the importance of understanding the spatial domains of each sex throughout the annual cycle that are associated with different mortality risks.Fil: Yamamoto, Takashi. Nagoya University; JapĂłnFil: Yoda, Ken. Nagoya University; JapĂłnFil: Blanco, Gabriela Silvina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto de BiologĂ­a de Organismos Marinos; ArgentinaFil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto de BiologĂ­a de Organismos Marinos; Argentin

    How legumes recognize rhizobia

    Get PDF
    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria.Facultad de Ciencias Exacta

    Annotation, phylogeny and expression analysis of the nuclear factor Y gene families in common bean (Phaseolus vulgaris)

    Get PDF
    In the past decade, plant nuclear factor Y (NF-Y) genes have gained major interest due to their roles in many biological processes in plant development or adaptation to environmental conditions, particularly in the root nodule symbiosis established between legume plants and nitrogen fixing bacteria. NF-Ys are heterotrimeric transcriptional complexes composed of three subunits, NF-YA, NF-YB, and NF-YC, which bind with high affinity and specificity to the CCAAT box, a cis element present in many eukaryotic promoters. In plants, NF-Y subunits consist of gene families with about 10 members each. In this study, we have identified and characterized the NF-Y gene families of common bean (Phaseolus vulgaris), a grain legume of worldwide economical importance and the main source of dietary protein of developing countries. Expression analysis showed that some members of each family are up-regulated at early or late stages of the nitrogen fixing symbiotic interaction with its partner Rhizobium etli. We also showed that some genes are differentially accumulated in response to inoculation with high or less efficient R. etli strains, constituting excellent candidates to participate in the strain-specific response during symbiosis. Genes of the NF-YA family exhibit a highly structured intron-exon organization. Moreover, this family is characterized by the presence of upstream ORFs when introns in the 5â€Č UTR are retained and miRNA target sites in their 3â€Č UTR, suggesting that these genes might be subjected to a complex post-transcriptional regulation. Multiple protein alignments indicated the presence of highly conserved domains in each of the NF-Y families, presumably involved in subunit interactions and DNA binding. The analysis presented here constitutes a starting point to understand the regulation and biological function of individual members of the NF-Y families in different developmental processes in this grain legume.Fil: RĂ­podas, Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular; ArgentinaFil: Castaingts, MĂ©lisse. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular; ArgentinaFil: Clua, Joaquin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular; ArgentinaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular; ArgentinaFil: Zanetti, MarĂ­a Eugenia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular; Argentin
    • 

    corecore