308 research outputs found
Heterostructure unipolar spin transistors
We extend the analogy between charge-based bipolar semiconductor electronics
and spin-based unipolar electronics by considering unipolar spin transistors
with different equilibrium spin splittings in the emitter, base, and collector.
The current of base majority spin electrons to the collector limits the
performance of ``homojunction'' unipolar spin transistors, in which the
emitter, base, and collector all are made from the same magnetic material. This
current is very similar in origin to the current of base majority carriers to
the emitter in homojunction bipolar junction transistors. The current in
bipolar junction transistors can be reduced or nearly eliminated through the
use of a wide band gap emitter. We find that the choice of a collector material
with a larger equilibrium spin splitting than the base will similarly improve
the device performance of a unipolar spin transistor. We also find that a
graded variation in the base spin splitting introduces an effective drift field
that accelerates minority carriers through the base towards the collector.Comment: 9 pages, 2 figure
Strong spin relaxation length dependence on electric field gradients
We discuss the influence of electrical effects on spin transport, and in
particular the propagation and relaxation of spin polarized electrons in the
presence of inhomogeneous electric fields. We show that the spin relaxation
length strongly depends on electric field gradients, and that significant
suppression of electron spin polarization can occur as a result thereof. A
discussion in terms of a drift-diffusion picture, and self-consistent numerical
calculations based on a Boltzmann-Poisson approach shows that the spin
relaxation length in fact can be of the order of the charge screening length.Comment: 4 pages, 3 figures, to be presented at PASPSI
- …