42 research outputs found

    Glutamine and glutathione at ICU admission in relation to outcome

    Get PDF
    Glutamine depletion is demonstrated to be an independent predictor of hospital mortality in ICU (intensive care unit) patients. Today glutamine supplementation is recommended to ICU patients on parenteral nutrition. In addition to glutamine, glutathione may be a limiting factor in ICU patients with MOF (multiple organ failure). To study the prevalence of glutamine and glutathione depletion an observational study was performed. The results were analysed in relation to mortality and the conventional predictors of mortality outcome, APACHE II (Acute Physiology and Chronic Health Evaluation II) and SOFA (Sequential Organ Failure Assessment). Consecutive patients admitted to the ICU at Karolinska University Hospital Huddinge were studied. Patient admission scoring of APACHE II and SOFA were registered as well as mortality up to 6 months. Plasma glutamine concentration and whole blood glutathione status at admittance were analysed. The admission plasma glutamine concentrations were totally independent of the conventional risk scoring at admittance, and a subnormal concentration was an independent predictor of mortality. In addition, glutathione redox status was also an independent mortality predictor, but here a normal ratio was the risk factor. In both cases the mortality risk was mainly confined to the post-ICU period. A low plasma concentration of glutamine at ICU admission is an independent risk factor for post-ICU mortality. The possible benefit of extending glutamine supplementation post-ICU should be evaluated prospectively

    Dysregulation of Mitochondrial Dynamics and the Muscle Transcriptome in ICU Patients Suffering from Sepsis Induced Multiple Organ Failure

    Get PDF
    BACKGROUND: Septic patients treated in the intensive care unit (ICU) often develop multiple organ failure including persistent skeletal muscle dysfunction which results in the patient's protracted recovery process. We have demonstrated that muscle mitochondrial enzyme activities are impaired in septic ICU patients impairing cellular energy balance, which will interfere with muscle function and metabolism. Here we use detailed phenotyping and genomics to elucidate mechanisms leading to these impairments and the molecular consequences. METHODOLOGY/PRINCIPAL FINDINGS: Utilising biopsy material from seventeen patients and ten age-matched controls we demonstrate that neither mitochondrial in vivo protein synthesis nor expression of mitochondrial genes are compromised. Indeed, there was partial activation of the mitochondrial biogenesis pathway involving NRF2alpha/GABP and its target genes TFAM, TFB1M and TFB2M yet clearly this failed to maintain mitochondrial function. We therefore utilised transcript profiling and pathway analysis of ICU patient skeletal muscle to generate insight into the molecular defects driving loss of muscle function and metabolic homeostasis. Gene ontology analysis of Affymetrix analysis demonstrated substantial loss of muscle specific genes, a global oxidative stress response related to most probably cytokine signalling, altered insulin related signalling and a substantial overlap between patients and muscle wasting/inflammatory animal models. MicroRNA 21 processing appeared defective suggesting that post-transcriptional protein synthesis regulation is altered by disruption of tissue microRNA expression. Finally, we were able to demonstrate that the phenotype of skeletal muscle in ICU patients is not merely one of inactivity, it appears to be an actively remodelling tissue, influenced by several mediators, all of which may be open to manipulation with the aim to improve clinical outcome. CONCLUSIONS/SIGNIFICANCE: This first combined protein and transcriptome based analysis of human skeletal muscle obtained from septic patients demonstrated that losses of mitochondria and muscle mass are accompanied by sustained protein synthesis (anabolic process) while dysregulation of transcription programmes appears to fail to compensate for increased damage and proteolysis. Our analysis identified both validated and novel clinically tractable targets to manipulate these failing processes and pursuit of these could lead to new potential treatments

    Oral supplementations with free and dipeptide forms of L-glutamine in endotoxemic mice: effects on muscle glutamine-glutathione axis and heat shock proteins

    No full text
    Sepsis is a leading cause of death in intensive care units worldwide. Low availability of glutamine contributes to the catabolic state of sepsis. l-Glutamine supplementation has antioxidant properties and modulates the expression of heat shock proteins (HSPs). This study investigated the effects of oral supplementation with l-glutamine plus l-alanine (GLN+ALA), both in the free form and l-alanyl-l-glutamine dipeptide (DIP), on glutamine-glutathione (GSH) axis and HSPs expression in endotoxemic mice. B6.129F2/J mice were subjected to endotoxemia (lipopolysaccharides from Escherichia coli, 5 mg.kg−1, LPS group) and orally supplemented for 48 h with either l-glutamine (1 g.kg−1) plusl-alanine (0.61 g.kg−1) (GLN+ALA-LPS group) or 1.49 g.kg−1 of DIP (DIP-LPS group). Endotoxemia reduced plasma and muscle glutamine concentrations [relative to CTRL group] which were restored in both GLN+ALA-LPS and DIP-LPS groups (P<.05). In supplemented groups were re-established GSH content and intracellular redox status (GSSG/GSH ratio) in circulating erythrocytes and muscle. Thiobarbituric acid reactive substance was 4-fold in LPS treated mice relative to the untreated CTRL group, and plasma TNF-α and IL-1β levels were attenuated by the supplements. Heat shock proteins 27, 70 and 90 (protein and mRNA) were elevated in the LPS group and were returned to basal levels (relative to CTRL group) in both GLN+ALA-LPS and DIP-LPS groups. Supplementations to endotoxemic mice resulted in up-regulation of GSH reductase, GSH peroxidase and glutamate cysteine ligase mRNA expression in muscle. In conclusion, oral supplementations with GLN+ALA or DIP are effective in reversing the conditions of LPS-induced deleterious impact on glutamine-GSH axis in mice under endotoxemia
    corecore