117 research outputs found

    Raloxifene inhibits tumor growth and lymph node metastasis in a xenograft model of metastatic mammary cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of raloxifene, a novel selective estrogen receptor modulator, were studied in a mouse metastatic mammary cancer model expressing cytoplasmic ERα.</p> <p>Methods</p> <p>Mammary tumors, induced by inoculation of syngeneic BALB/c mice with BJMC3879luc2 cells, were subsequently treated with raloxifene at 0, 18 and 27 mg/kg/day using mini-osmotic pumps.</p> <p>Results</p> <p><it>In vitro </it>study demonstrated that the ERα in BJMC3879luc2 cells was smaller (between 50 and 64 kDa) than the normal-sized ERα (66 kDa) and showed cytoplasmic localization. A statistically significant but weak estradiol response was observed in this cell line. When BJMC3879luc2 tumors were implanted into mice, the ERα mRNA levels were significantly higher in females than in males. <it>In vitro </it>studies showed that raloxifene induced mitochondria-mediated apoptosis and cell-cycle arrest in the G1-phase and a decrease in the cell population in the S-phase. In animal experiments, tumor volumes were significantly suppressed in the raloxifene-treated groups. The multiplicity of lymph node metastasis was significantly decreased in the 27 mg/kg group. Levels of apoptosis were significantly increased in the raloxifene-treated groups, whereas the levels of DNA synthesis were significantly decreased in these groups. No differences in microvessel density in tumors were observed between the control and raloxifene-treated groups. The numbers of dilated lymphatic vessels containing intraluminal tumor cells were significantly reduced in mammary tumors in the raloxifene-treated groups. The levels of ERα mRNA in mammary tumors tended to be decreased in the raloxifene-treated groups.</p> <p>Conclusion</p> <p>These results suggest that the antimetastatic activity of raloxifene in mammary cancer expressing cytoplasmic ERα may be a crucial finding with clinical applications and that raloxifene may be useful as an adjuvant therapy and for the chemoprevention of breast cancer development.</p

    Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    Get PDF
    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe fluid-structure interaction models of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employ a version of Peskin's immersed boundary (IB) method with a finite element (FE) description of the structural elasticity. We develop both an idealized model of the root with three-fold symmetry of the aortic sinuses and valve leaflets, and a more realistic model that accounts for the differences in the sizes of the left, right, and noncoronary sinuses and corresponding valve cusps. As in earlier work, we use fiber-based models of the valve leaflets, but this study extends earlier IB models of the aortic root by employing incompressible hyperelastic models of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backwards displacement method that determines the unloaded configurations of the root models. Our models yield realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations demonstrate that IB models of the aortic valve are able to produce essentially grid-converged dynamics at practical grid spacings for the high-Reynolds number flows of the aortic root

    Bumble bee parasite strains vary in resistance to phytochemicals

    Get PDF
    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemical, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline

    Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics

    Get PDF
    Biofilms contribute to the pathogenesis of many forms of Staphylococcus aureus infection. Treatment of these infections is complicated by intrinsic resistance to conventional antibiotics, thus creating an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections.This study demonstrates that a botanical natural product composition (220D-F2) rich in ellagic acid and its derivatives can limit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility. The source of this composition is Rubus ulmifolius Schott. (Rosaceae), a plant used in complementary and alternative medicine in southern Italy for the treatment of skin and soft tissue infections. All S. aureus clonal lineages tested exhibited a reduced capacity to form a biofilm at 220D-F2 concentrations ranging from 50-200 µg/mL, which were well below the concentrations required to limit bacterial growth (530-1040 µg/mL). This limitation was therapeutically relevant in that inclusion of 220D-F2 resulted in enhanced susceptibility to the functionally-distinct antibiotics daptomycin, clindamycin and oxacillin. Testing with kidney and liver cell lines also demonstrated a lack of host cell cytotoxicity at concentrations of 220D-F2 required to achieve these effects.These results demonstrate that extract 220D-F2 from the root of Rubus ulmifolius can be used to inhibit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. Hence, 220D-F2 is a strong candidate for development as a botanical drug for use in the prevention and treatment of S. aureus biofilm-associated infections

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Effectiveness of probiotics in the prevention of carious lesions during treatment with fixed orthodontic appliances.

    Full text link

    Chemical composition, antioxidant and anti-acetylcholinesterase activities of Tunisian Crithmum maritimum L. essential oils

    No full text
    Acetylcholinesterase properties of the aerial parts and roots essential oils from Crithmum maritimum L., Apiaceae, gathered in the area of Monastir (Tunisia). The essential oils have been analysed by GC and GC-MS. Remarkable differences were found between the constituent percentages of the different studied organs. The most important compounds from the aerial parts were: γ-terpinene (39.3%), methylcarvacrol (21.6%) and p-cymene (11.8%). In the roots oil, the main components were terpinolene (36.9%), dillapiole (26.8%) and γ-terpinene (21.9%). The antioxidant activity of the two oils was evaluated by employing 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging tests. The results showed that the antioxidant capacity assessed by different in vitro tests were moderate, the ABTS assay after 20 min (IC50 = 0.051 mg/mL) of aerial parts and (IC50 = 0.643 mg/mL) of the roots, appeared to be more potent than that for the DPPH assay (IC50 = 0.92 mg/mL) of aerial parts and (IC50 = 0.048 mg/mL) of roots. In addition, the examined oils showed the highest AchE inhibitory 1 mg/mL activity (31.16% and 26.35%, for the aerial parts and roots, respectively
    corecore