14 research outputs found

    Aurintricarboxylic Acid Is a Potent Inhibitor of Influenza A and B Virus Neuraminidases

    Get PDF
    Background: Influenza viruses cause serious infections that can be prevented or treated using vaccines or antiviral agents, respectively. While vaccines are effective, they have a number of limitations, and influenza strains resistant to currently available anti-influenza drugs are increasingly isolated. This necessitates the exploration of novel anti-influenza therapies. Methodology/Principal Findings: We investigated the potential of aurintricarboxylic acid (ATA), a potent inhibitor of nucleic acid processing enzymes, to protect Madin-Darby canine kidney cells from influenza infection. We found, by neutral red assay, that ATA was protective, and by RT-PCR and ELISA, respectively, confirmed that ATA reduced viral replication and release. Furthermore, while pre-treating cells with ATA failed to inhibit viral replication, pre-incubation of virus with ATA effectively reduced viral titers, suggesting that ATA may elicit its inhibitory effects by directly interacting with the virus. Electron microscopy revealed that ATA induced viral aggregation at the cell surface, prompting us to determine if ATA could inhibit neuraminidase. ATA was found to compromise the activities of virus-derived and recombinant neuraminidase. Moreover, an oseltamivir-resistant H1N1 strain with H274Y was also found to be sensitive to ATA. Finally, we observed additive protective value when infected cells were simultaneously treated with ATA and amantadine hydrochloride, an antiinfluenza drug that inhibits M2-ion channels of influenza A virus. Conclusions/Significance: Collectively, these data suggest that ATA is a potent anti-influenza agent by directly inhibiting th

    Acetaminophen Modulates the Transcriptional Response to Recombinant Interferon-Ξ²

    Get PDF
    BACKGROUND: Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-beta treatment. CD-1 mice were administered acetaminophen (APAP), interferon-beta (IFN-beta) or a combination of IFN-beta+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-beta. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IkappaBK/NF-kappaB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. CONCLUSIONS/SIGNIFICANCE: A significant change in the transcriptional response was observed following co-administration of IFN-beta+APAP relative to IFN-beta treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-beta treatment

    Determination of the selective index of ATA in MDCK cells.

    No full text
    <p>(A) Cytotoxicity of ATA in MDCK cells. MDCK cells were treated with ATA for 48 h at the indicated ATA concentrations (Β΅g/ml). Cell viability was determined by neutral red assay by measuring the absorbance at 540 nm. Samples were tested in quadruplicate and showed as means and standard deviations (error bars). (B) Inhibition of influenza A PR8 infection in MDCK cells by ATA is concentration-dependent. MDCK cells were infected with influenza A PR8 virus (MOI 0.001) and treated with ATA at increasing concentrations for 48 h. Cell viability was determined by neutral red assay by measuring the absorbance at 540 nm. Samples were tested in duplicate and showed as means and standard deviations (error bars).</p

    ATA reduces the level of influenza NP RNA detectable in MDCK cells.

    No full text
    <p>MDCK cells were infected with influenza A PR8 virus and treated with the indicated concentrations of ATA for 24 h. Total RNA was extracted and reverse-transcription PCR was performed to determine NP and Ξ²-actin RNA levels.</p

    Influenza PR8 virus forms aggregates upon ATA treatment.

    No full text
    <p>MDCK cells were infected with influenza A PR8 virus and exposed to DMSO, AH or ATA, then processed for electron microscopy. (A and B) Low and high magnification view, respectively, of MDCK cells infected with influenza A PR8 virus in the presence of DMSO only. (C and D) Low and high magnification view, respectively, of MDCK cells infected with influenza A PR8 virus in the presence of AH. (E and F) Low and high magnification view, respectively, of MDCK cells infected with influenza A PR8 virus in the presence of ATA.</p

    ATA inhibits NA enzymatic activity.

    No full text
    <p>ATA inhibits enzymatic activity of NA (A) derived from PR8, NC, NY and B viruses, (B) recombinant N1 and N4 proteins. Viruses or recombinant proteins were incubated with increasing concentrations of ATA and NA enzymatic activity was determined by a chemiluminescent assay. Samples were tested in quadruplicates and presented as means and standard deviations (error bars).</p

    ATA and AH protect MDCK cells from influenza A infection.

    No full text
    <p>Uninfected MDCK cells, or MDCK cells infected with influenza A strains were treated with either ATA alone, AH alone, or in combinations at concentrations indicated. (A) MDCK cells infected with influenza A PR8 virus; (B) MDCK cells infected with influenza A NC virus; (C) MDCK cells infected with influenza A NY virus. Protection of cells from infection was determined by NR dye uptake. Cell viability was determined by measuring the absorbance at 540 nm. The columns represent the means of triplicates and error bars represent standard deviations. *β€Š=β€Šcorrected p-value <0.05. Not all statistically significant differences are shown.</p

    ATA reduces viral release from infected MDCK cells into the media.

    No full text
    <p>MDCK cells were inoculated with influenza A viruses (MOI 0.001), then treated with ATA for 48 h. Media were collected and released viruses were quantified by ELISA. The columns represent the means of triplicates and error bars represent standard deviations. *β€Š=β€Šcorrected p-value <0.05.</p
    corecore