8,313 research outputs found
Results from NEMO 3
The NEMO 3 experiment is located in the Modane Underground Laboratory and has
been taking data since 2003 with seven isotopes. It is searching for the double
beta decay process with two or zero neutrinos emitted in the final state.
Precision measurements of the half-life of the isotopes due to two neutrino
double beta decay have been performed and new results for 96Zr, 48Ca and 150Nd
are presented here. Measurements of this process are important for reducing the
uncertainties on the nuclear matrix elements. No evidence for zero neutrino
double beta decay has been found and a 90% Confidence Level lower limit on the
half-life of this process is derived. From this an upper limit can be set on
the effective Majorana neutrino mass using the most recent nuclear matrix
elements calculations.Comment: 4 pages, 6 figures, a paper submitted to the proceedings for the
conference Neutrino0
Evaluation Polyurethane Elastomeric Compound Cps-796-65, Type II
Performance evaluation tests on encapsulating polyurethane elastomeric compound, type II
Use of intensity quotients and differences in absolute structure refinement
Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement
Shuttle/GPSPAC experimentation study
The utilization is discussed of the GPSPAC, which is presently being developed to be used on the low altitude host vehicle (LAHV), for possible use in the shuttle avionics system to evaluate shuttle/GPS navigation performance. Analysis and tradeoffs of the shuttle/GPS link, shuttle signal interface requirements, oscillator tradeoffs and GPSPAC mechanical modifications for shuttle are included. Only the on-orbit utilization of GPSPAC for the shuttle is discussed. Other phases are briefly touched upon. Recommendations are provided for using the present GPSPAC and the changes required to perform shuttle on-orbit navigation
Performance and test section flow characteristics of the National Full-Scale Aerodynamics Complex 40- by 80-foot wind tunnel
Results from the performance and test section flow calibration of the 40- by 80-Foot Wind Tunnel are presented. A flow calibration test was conducted in May and June 1987. The goal of the flow calibration test was to determine detailed spatial variations in the 40- by 80-ft test section flow quality throughout the tunnel operational envelope. Data were collected for test section speeds up to 300 knots and for air exchange rates of 0, 5, and 10 percent. The tunnel performance was also calibrated during the detailed mapping of the test section flow field. Experimental results presented indicate that the flow quality in the test section, with the exception of temperature, is relatively insensitive to the level of dynamic pressure and the air exchange rate. The dynamic pressure variation in the test section is within + or - 0.5 deg at all test section velocities. Cross-stream temperature gradients in the test section caused by the air exchange system were documented, and a correction method was established. Streamwise static pressure variation on the centerline is about 1 percent of test section dynamic pressure over 30 ft of the test section length
Instability thresholds for flexible rotors in hydrodynamic bearings
Two types of fixed pad hydrodynamic bearings (multilobe and pressure dam) were considered. Optimum and nonoptimum geometric configurations were tested. The optimum geometric configurations were determined by using a theoretical analysis and then the bearings were constructed for a flexible rotor test rig. It was found that optimizing bearings using this technique produces a 100% or greater increase in rotor stability. It is shown that this increase in rotor stability is carried out in the absence of certain types of instability mechanisms such as aerodynamic crosscoupling. However, the increase in rotor stability should greatly improve rotating machinery performance in the presence of such forces as well
- …