1,111 research outputs found
Obtaining Breathers in Nonlinear Hamiltonian Lattices
We present a numerical method for obtaining high-accuracy numerical solutions
of spatially localized time-periodic excitations on a nonlinear Hamiltonian
lattice. We compare these results with analytical considerations of the spatial
decay. We show that nonlinear contributions have to be considered, and obtain
very good agreement between the latter and the numerical results. We discuss
further applications of the method and results.Comment: 21 pages (LaTeX), 8 figures in ps-files, tar-compressed uuencoded
file, Physical Review E, in pres
The phase plane of moving discrete breathers
We study anharmonic localization in a periodic five atom chain with
quadratic-quartic spring potential. We use discrete symmetries to eliminate the
degeneracies of the harmonic chain and easily find periodic orbits. We apply
linear stability analysis to measure the frequency of phonon-like disturbances
in the presence of breathers and to analyze the instabilities of breathers. We
visualize the phase plane of breather motion directly and develop a technique
for exciting pinned and moving breathers. We observe long-lived breathers that
move chaotically and a global transition to chaos that prevents forming moving
breathers at high energies.Comment: 8 pages text, 4 figures, submitted to Physical Review Letters. See
http://www.msc.cornell.edu/~houle/localization
Chaotic transients in the switching of roto-breathers
By integrating a set of model equations for Josephson ladder subjected to a
uniform transverse bias current we have found almost all of the kinds of
breathers described in recent experiments, and closely reproduced their
voltage-current characteristics and switching behaviour. Our main result is
that a chaotic transient occurs in the switching process. The growth of tiny
perturbations during the chaotic transient causes the new breather
configuration to be extremely sensitive to the precise history of the initial
breather and can also cause the new breather to have a new centre of symmetry.Comment: 6 pages, 4 figure
Nonlinear waves in disordered chains: probing the limits of chaos and spreading
We probe the limits of nonlinear wave spreading in disordered chains which
are known to localize linear waves. We particularly extend recent studies on
the regimes of strong and weak chaos during subdiffusive spreading of wave
packets [EPL {\bf 91}, 30001 (2010)] and consider strong disorder, which favors
Anderson localization. We probe the limit of infinite disorder strength and
study Fr\"ohlich-Spencer-Wayne models. We find that the assumption of chaotic
wave packet dynamics and its impact on spreading is in accord with all studied
cases. Spreading appears to be asymptotic, without any observable slowing down.
We also consider chains with spatially inhomogeneous nonlinearity which give
further support to our findings and conclusions.Comment: 11 pages, 7 figure
The crossover from strong to weak chaos for nonlinear waves in disordered systems
We observe a crossover from strong to weak chaos in the spatiotemporal
evolution of multiple site excitations within disordered chains with cubic
nonlinearity. Recent studies have shown that Anderson localization is
destroyed, and the wave packet spreading is characterized by an asymptotic
divergence of the second moment in time (as ), due to weak
chaos. In the present paper, we observe the existence of a qualitatively new
dynamical regime of strong chaos, in which the second moment spreads even
faster (as ), with a crossover to the asymptotic law of weak chaos at
larger times. We analyze the pecularities of these spreading regimes and
perform extensive numerical simulations over large times with ensemble
averaging. A technique of local derivatives on logarithmic scales is developed
in order to quantitatively visualize the slow crossover processes.Comment: 5 pages, 3 figures. Submitted Europhysics Letter
Anderson localization or nonlinear waves? A matter of probability
In linear disordered systems Anderson localization makes any wave packet stay
localized for all times. Its fate in nonlinear disordered systems is under
intense theoretical debate and experimental study. We resolve this dispute
showing that at any small but finite nonlinearity (energy) value there is a
finite probability for Anderson localization to break up and propagating
nonlinear waves to take over. It increases with nonlinearity (energy) and
reaches unity at a certain threshold, determined by the initial wave packet
size. Moreover, the spreading probability stays finite also in the limit of
infinite packet size at fixed total energy. These results are generalized to
higher dimensions as well.Comment: 4 pages, 3 figure
Discrete breathers in classical spin lattices
Discrete breathers (nonlinear localised modes) have been shown to exist in
various nonlinear Hamiltonian lattice systems. In the present paper we study
the dynamics of classical spins interacting via Heisenberg exchange on spatial
-dimensional lattices (with and without the presence of single-ion
anisotropy). We show that discrete breathers exist for cases when the continuum
theory does not allow for their presence (easy-axis ferromagnets with
anisotropic exchange and easy-plane ferromagnets). We prove the existence of
localised excitations using the implicit function theorem and obtain necessary
conditions for their existence. The most interesting case is the easy-plane one
which yields excitations with locally tilted magnetisation. There is no
continuum analogue for such a solution and there exists an energy threshold for
it, which we have estimated analytically. We support our analytical results
with numerical high-precision computations, including also a stability analysis
for the excitations.Comment: 15 pages, 12 figure
Observation of breathers in Josephson ladders
We report on the observation of spatially-localized excitations in a ladder
of small Josephson junctions. The excitations are whirling states which persist
under a spatially-homogeneous force due to the bias current. These states of
the ladder are visualized using a low temperature scanning laser microscopy. We
also compute breather solutions with high accuracy in corresponding model
equations. The stability analysis of these solutions is used to interpret the
measured patterns in the I-V characteristics
- …