103 research outputs found

    The RIPI-f (Reporting Integrity of Psychological Interventions delivered face-to-face) checklist was developed to guide reporting of treatment integrity in face-to-face psychological interventions

    Full text link
    Objective: Intervention integrity is the degree to which the study intervention is delivered as intended. This article presents the RIPI-f checklist (Reporting Integrity of Psychological Interventions delivered face-to-face) and summarizes its development methods. RIPI-f proposes guidance for reporting intervention integrity in evaluative studies of face-to-face psychological interventions. Study design and setting: We followed established procedures for developing reporting guidelines. We examined 56 documents (reporting guidelines, bias tools, and methodological guidance) for relevant aspects of face-to-face psychological intervention integrity. Eighty-four items were identified and grouped according to the template for intervention description and replication (TIDieR) domains. Twenty-nine experts from psychology and medicine and other scholars rated the relevance of each item in a single-round Delphi survey. A multidisciplinary panel of 11 experts discussed the survey results in three online consensus meetings and drafted the final version of the checklist. Results: We propose RIPI-f, a checklist with 50 items. Our checklist enhances TIDieR with important extensions, such as therapeutic alliance, provider's allegiance, and the adherence of providers and participants. Conclusion: RIPI-f can improve the reporting of face-to-face psychological interventions. The tool can help authors, researchers, systematic reviewers, and guideline developers. We suggest using RIPI-f alongside other reporting guidelines

    Invalidität in der Schweiz - Einflussfaktoren und zukünftige Entwicklung

    Get PDF

    Extended Overview of CLEF HIPE 2020: Named Entity Processing on Historical Newspapers

    Full text link
    This paper presents an extended overview of the first edition of HIPE (Identifying Historical People, Places and other Entities), a pioneering shared task dedicated to the evaluation of named entity processing on historical newspapers in French, German and English. Since its introduction some twenty years ago, named entity (NE) processing has become an essential component of virtually any text mining application and has undergone major changes. Recently, two main trends characterise its developments: the adoption of deep learning architectures and the consideration of textual material originating from historical and cultural heritage collections. While the former opens up new opportunities, the latter introduces new challenges with heterogeneous, historical and noisy inputs. In this context, the objective of HIPE, run as part of the CLEF 2020 conference, is threefold: strengthening the robustness of existing approaches on non-standard inputs, enabling performance comparison of NE processing on historical texts, and, in the long run, fostering efficient semantic indexing of historical documents. Tasks, corpora, and results of 13 participating teams are presented. Compared to the condensed overview [31], this paper includes further details about data generation and statistics, additional information on participating systems, and the presentation of complementary results

    Foucault pendulum properties of spherical oscillators

    No full text
    In 1851 Léon Foucault created a sensation with his pendulum providing a direct demonstration of the turning of the Earth. This simple device consists of a pendulum which is launched in a purely planar orbit. Following Mach's principle of inertia, the mass will continue to oscillate in the same planar orbit with respect to absolute space. For an observer on Earth, however, the plane of oscillation will turn. Conceptually speaking, Foucault constructed a very precise demonstrator showing that, when put on a rotating table, planar oscillations of an isotropic two degree of freedom oscillator remain planar with respect to an inertial frame of reference. These oscillators have currently been under study in order to construct new horological time bases. A novel concept was a spherical isotropic two degree of freedom oscillator. Theoretical computations indicate that when put on a rotating table, planar oscillations of the spherical oscillator neither remain planar in the inertial frame nor in the rotating frame of reference, but in a frame of reference rotating at exactly half the rotational speed of the rotating table. This intriguing result led to the design, construction and experimental validation of a proof of concept demonstrator placed on a motorized rotating table. The demonstrator consists of a spherical isotropic oscillator, a launcher to place the oscillator on planar orbits, a motorized rotating table and a measurement setup. The experimental data recorded by the lasers validates the physical phenomenon

    Design of a Flexure Based Low Frequency Foucault Pendulum

    No full text
    The Foucault pendulum is a well-known mechanism used to demonstrate the rotation of the Earth. It consists in a pendulum launched on linear orbits and, following Mach’s Principle, this line of oscillation will remain fixed with respect to absolute space but appear to slowly precess for a terrestrial observer due to the turning of the Earth. The theoretical proof of this phenomenon uses the fact that, to first approximation, the Foucault pendulum is a harmonic isotropic two degree of freedom (2-DOF) oscillator. Our interest in this mechanism follows from our research on flexure-based implementations of 2-DOF oscillators for their application as time bases for mechanical timekeeping. The concept of the Foucault pendulum therefore applies directly to 2-DOF flexure based harmonic oscillators. In the Foucault pendulum experiment, the rotation of the Earth is not the only source of precession. The unavoidable defects in the isotropy of the pendulum along with its well-known intrinsic isochronism defect induce additional precession which can easily mask the precession due to Earth rotation. These effects become more prominent as the frequency increases, that is, when the length of the pendulum decreases. For this reason, short Foucault pendulums are difficult to implement, museum Foucault pendulum are typically at least 7 meters long. These effects are also present in our flexure based oscillators and reducing these parasitic effects, requires decreasing their frequency. This paper discusses the design and dimensioning of a new flexure based 2-DOF oscillator which can reach low frequencies of the order of 0.1[Hz]. The motion of this oscillator is approximatelyplanar, like the classical Foucault pendulum, and will have the same Foucault precession rate. The construction of a low frequency demonstrator is underway and will be followed by quantitative measurements which will examine both the Foucault effect as well as parasitic precession

    Foucault pendulum properties of spherical oscillators

    No full text
    The Foucault pendulum provides a demonstration of the turning of the Earth. The principle at work is that linear oscillations of a two-degree-of-freedom isotropic harmonic oscillator remain unchanged in an inertial frame of reference, so appear to precess in a rotating frame of reference. In recent work, we applied two-degree-of-freedom isotropic oscillators to mechanical timekeeping. In this paper, we note that the spherical oscillators we considered have qualitatively different behavior in a non-inertial frame. We show that when in a rotating frame, linear oscillations precess at one half the rotational speed of the rotating frame. We validate this result experimentally by designing and constructing a proof of concept demonstrator placed on a motorized rotating table. The demonstrator consists of a spherical isotropic oscillator, a launcher to place the oscillator on planar orbits, a motorized rotating table, video recording for qualitative observation, and a laser measurement setup for quantitative results. The experimental data recorded by the lasers strongly validate the physical phenomenon

    Overview of CLEF HIPE 2020: Named Entity Recognition and Linking on Historical Newspapers

    Full text link
    This paper presents an overview of the first edition of HIPE (Identifying Historical People, Places and other Entities), a pioneering shared task dedicated to the evaluation of named entity processing on historical newspapers in French, German and English. Since its introduction some twenty years ago, named entity (NE) processing has become an essential component of virtually any text mining application and has undergone major changes. Recently, two main trends characterise its developments: the adoption of deep learning architectures and the consideration of textual material originating from historical and cultural heritage collections. While the former opens up new opportunities, the latter introduces new challenges with heterogeneous, historical and noisy inputs. In this context, the objective of HIPE, run as part of the CLEF 2020 conference, is threefold: strengthening the robustness of existing approaches on non-standard inputs, enabling performance comparison of NE processing on historical texts, and, in the long run, fostering efficient semantic indexing of historical documents. Tasks, corpora, and results of 13 participating teams are presented
    corecore