11 research outputs found

    Gornergrat and Jungfraujoch – two exciting destinations for tourism and research

    No full text
    After having been made accessible by two of the first cog railways in Europe more than 100 years ago, Gornergrat and Jungfraujoch became two extraordinary places: both are well known worldwide as exciting tourist destinations, and at the same time they are unique research sites. This article illustrates this duality in relation with the International Foundation HFSJG

    Test and simulation of a Fast Neutron Imaging Telescope

    No full text
    The capability to detect fast neutrons with good angular and energy resolutions is gaining increased interest for different applications such as non-destructive testing, homeland security, and space-borne solar physics. To the latter aim, we recently developed and tested a novel type of instrument, the Fast Neutron Imaging Telescope (FNIT), for neutron spectroscopy and imaging in the 1-20 MeV range. Assessments of the instrument prototype performances, based on Monte Carlo simulations and on results from calibration tests performed in a monoenergetic neutron beam, are presented here. The purpose of the study is twofold: (1) to provide a comprehensive characterization of the prototype response, notably in terms of efficiency, event selection, energy and angular resolution; (2) to validate the simulation tool to support data analysis and reduction, and also to help in the design of more complex fast neutron telescopes

    Applications and usage of the real-time Neutron Monitor Database

    No full text
    A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore, on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensive network of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity - known as Forbush decreases - will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor's data usage. © 2010 Published by Elsevier Ltd. on behalf of COSPAR

    A new version of the Neutron Monitor Based Anisotropic GLE Model : Application to GLE60

    Full text link
    In this work we present a cosmic ray model that couples primary solar cosmic rays at the top of the Earth's atmosphere with the secondary ones detected at ground level by neutron monitors during Ground Level Enhancements (GLEs). The Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) Model constitutes a new version of the already existing NMBANGLE Model, differing in the solar cosmic ray spectrum assumed. The total output of the model is a multi-dimensional GLE picture that reveals part of the characteristics of the big solar proton events recorded at ground level. We apply both versions of the model to the GLE of 15 April 2001 (GLE60) and compare the results.Comment: This paper has been withdrawn by the authors. Please see our article in Solar Physics (2010
    corecore