6 research outputs found

    Exfoliated hexagonal BN as gate dielectric for InSb nanowire quantum dots with improved gate hysteresis and charge noise

    Full text link
    We characterize InSb quantum dots induced by bottom finger gates within a nanowire that is grown via the vapor-liquid-solid process. The gates are separated from the nanowire by an exfoliated 35\,nm thin hexagonal BN flake. We probe the Coulomb diamonds of the gate induced quantum dot exhibiting charging energies of ∼2.5 meV\sim 2.5\,\mathrm{meV} and orbital excitation energies up to 0.3 meV0.3\,\mathrm{meV}. The gate hysteresis for sweeps covering 5 Coulomb diamonds reveals an energy hysteresis of only 60μeV60\mathrm{\mu eV} between upwards and downwards sweeps. Charge noise is studied via long-term measurements at the slope of a Coulomb peak revealing potential fluctuations of ∼1 μeV/Hz\sim 1\,\mu \mathrm{eV}/\mathrm{\sqrt{Hz}} at 1\,Hz. This makes h-BN the dielectric with the currently lowest gate hysteresis and lowest low-frequency potential fluctuations reported for low-gap III-V nanowires. The extracted values are similar to state-of-the art quantum dots within Si/SiGe and Si/SiO2{_2} systems

    Scanning tunneling microscopy with InAs nanowire tips

    No full text
    Indium arsenide nanowires grown by selective-area vapor phase epitaxy are used as tips for scanning tunneling microscopy (STM). The STM tips are realized by positioning the wires manually on the corner of a double cleaved gallium arsenide wafer with sub-μm precision and contacting them lithographically, which is fully compatible with further integrated circuitry on the GaAs wafer. STM images show a z noise of 2 pm and a lateral stability of, at least, 0.5 nm on a Au(111) surface. I(z) spectroscopy reveals an exponential decay indicating tunneling through vacuum. Subsequent electron microscopy images of the tip demonstrate that the wires are barely modified during the STM imaging
    corecore