136 research outputs found
Pressure-induced structural transitions in MgH
The stability of MgH has been studied up to 20~GPa using
density-functional total-energy calculations. At ambient pressure
-MgH takes a TiO-rutile-type structure. -MgH is
predicted to transform into -MgH at 0.39~GPa. The calculated
structural data for - and -MgH are in very good agreement
with experimental values. At equilibrium the energy difference between these
modifications is very small, and as a result both phases coexist in a certain
volume and pressure field. Above 3.84~GPa -MgH transforms into
-MgH; consistent with experimental findings. Two further
transformations have been identified at still higher pressure: i) - to
-MgH at 6.73 GPa and (ii) - to -MgH at
10.26~GPa.Comment: 4 pages, 4 figure
The Jahn-Teller active fluoroperovskites : thermo- and magneto optical correlations as function of the -site
Chromium (II) fluoroperovskites are
strongly correlated Jahn-Teller active materials at low temperatures. In this
paper, we examine the role that the -site ion plays in this family of
fluoroperovskites using both experimental methods (XRD, optical absorption
spectroscopy and magnetic fields) and DFT simulations. Temperature-dependent
optical absorption experiments show that the spin-allowed transitions and
only merge completely for = Na at 2 K. Field-dependent optical
absorption measurements at 2 K show that the oscillating strength of the
spin-allowed transitions in increases with increasing
applied field. Direct magneto-structural correlations which suppress the
spin-flip transitions are observed for below its Ne\'el
temperature. In the spin-flip transitions vanish abruptly below
9 K revealing magneto-optical correlations not linked to crystal structure
changes. This suggests that as the long range ordering is reduced local JT
effects in the individual octahedra take control of the
observed behavior. Our results show clear deviation from the pattern found for
the isoelectronic system. The size of the -site cation
is shown to be central in dictating the physical properties and phase
transitions in , opening up the possibility of varying the
composition to create novel states of matter with tuneable properties
Iron oxide doped boron nitride nanotubes: structural and magnetic properties
A first-principles formalism is employed to investigate the interaction of
iron oxide (FeO) with a boron nitride (BN) nanotube. The stable structure of
the FeO-nanotube has Fe atoms binding N atoms, with bond length of roughly
2.1 \AA, and binding between O and B atoms, with bond length of 1.55 \AA.
In case of small FeO concentrations, the total magnetic moment is
(4) times the number of Fe atoms in the unit cell and it is
energetically favorable to FeO units to aggregate rather than randomly bind to
the tube. As a larger FeO concentration case, we study a BN nanotube fully
covered by a single layer of FeO. We found that such a structure has square FeO
lattice with Fe-O bond length of 2.11 \AA, similar to that of FeO bulk, and
total magnetic moment of 3.94 per Fe atom. Consistently with
experimental results, the FeO covered nanotube is a semi-half-metal which can
become a half-metal if a small change in the Fermi level is induced. Such a
structure may be important in the spintronics context.Comment: 10 pages, 3 figure
Coulomb correlation effects in zinc monochalcogenides
Electronic structure and band characteristics for zinc monochalcogenides with
zinc-blende- and wurtzite-type structures are studied by first-principles
density-functional-theory calculations with different approximations. It is
shown that the local-density approximation underestimates the band gap and
energy splitting between the states at the top of the valence band, misplaces
the energy levels of the Zn-3d states, and overestimates the
crystal-field-splitting energy. Regardless of the structure type considered,
the spin-orbit-coupling energy is found to be overestimated for ZnO and
underestimated for ZnS with wurtzite-type structure, and more or less correct
for ZnSe and ZnTe with zinc-blende-type structure. The order of the states at
the top of the valence band is found to be anomalous for ZnO in both
zinc-blende- and wurtzite-type structure, but is normal for the other zinc
monochalcogenides considered. It is shown that the Zn-3d electrons and their
interference with the O-2p electrons are responsible for the anomalous order.
The typical errors in the calculated band gaps and related parameters for ZnO
originate from strong Coulomb correlations, which are found to be highly
significant for this compound. The LDA+U approach is by and large found to
correct the strong correlation of the Zn-3d electrons, and thus to improve the
agreement with the experimentally established location of the Zn-3d levels
compared with that derived from pure LDA calculations
Electronic structure and optical properties of ZnX (X=O, S, Se, Te)
Electronic band structure and optical properties of zinc monochalcogenides
with zinc-blende- and wurtzite-type structures were studied using the ab initio
density functional method within the LDA, GGA, and LDA+U approaches.
Calculations of the optical spectra have been performed for the energy range
0-20 eV, with and without including spin-orbit coupling. Reflectivity,
absorption and extinction coefficients, and refractive index have been computed
from the imaginary part of the dielectric function using the Kramers--Kronig
transformations. A rigid shift of the calculated optical spectra is found to
provide a good first approximation to reproduce experimental observations for
almost all the zinc monochalcogenide phases considered. By inspection of the
calculated and experimentally determined band-gap values for the zinc
monochalcogenide series, the band gap of ZnO with zinc-blende structure has
been estimated.Comment: 17 pages, 10 figure
The Origin of Magnetic Interactions in Ca3Co2O6
We investigate the microscopic origin of the ferromagnetic and
antiferromagnetic spin exchange couplings in the quasi one-dimensional cobalt
compound Ca3Co2O6. In particular, we establish a local model which stabilizes a
ferromagnetic alignment of the S=2 spins on the cobalt sites with trigonal
prismatic symmetry, for a sufficiently strong Hund's rule coupling on the
cobalt ions. The exchange is mediated through a S=0 cobalt ion at the
octahedral sites of the chain structure. We present a strong coupling
evaluation of the Heisenberg coupling between the S=2 Co spins on a separate
chain. The chains are coupled antiferromagnetically through super-superexchange
via short O-O bonds.Comment: 5 Pages, 3 Figures; added anisotropy term in eq. 9; extended
discussion of phase transitio
Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations
Formation energies of various intrinsic defects and defect complexes in ZnO have been calculated using a density-functional-theory-based pseudopotential all-electron method. The various defects considered are oxygen vacancy (VO), zinc vacancy (VZn), oxygen at an interstitial site (Oi), Zn at an interstitial site (Zni), Zn at VO (ZnO), O at VZn(OZn), and an antisite pair (combination of the preceding two defects). In addition, defect complexes like (VO+Zni) and Zn-vacancy clusters are studied. The Schokkty pair (VO+VZn) and Frenkel pairs [(VO+Oi) and (VZn+Zni)] are considered theoretically for the first time. Upon comparing the formation energies of these defects, we find that VO would be the dominant intrinsic defect under both Zn-rich and O-rich conditions and it is a deep double donor. Both ZnO and Zni are found to be shallow donors. The low formation energy of donor-type intrinsic defects could lead to difficulty in achieving p-type conductivity in ZnO. Defect complexes have charge transitions deep inside the band gap. The red, yellow, and green photoluminescence peaks of undoped samples can be assigned to some of the defect complexes considered. It is believed that the red luminescence originates from an electronic transition in VO, but we find that it can originate from the antisite ZnO defect. Charge density and electron-localization function analyses have been used to understand the effect of these defects on the ZnO lattice. The electronic structure of ZnO with intrinsic defects has been studied using density-of-states and electronic band structure plots. The acceptor levels introduced by VZn are relatively localized, making it difficult to achieve p-type conductivity with sufficient hole mobility.Peer reviewe
- …