39 research outputs found

    Can residuals of the Solar system foreground explain low multipole anomalies of the CMB ?

    Full text link
    The low multipole anomalies of the Cosmic Microwave Background has received much attention during the last few years. It is still not ascertained whether these anomalies are indeed primordial or the result of systematics or foregrounds. An example of a foreground, which could generate some non-Gaussian and statistically anisotropic features at low multipole range, is the very symmetric Kuiper Belt in the outer solar system. In this paper, expanding upon the methods presented by Maris et al. (2011), we investigate the contributions from the Kuiper Belt objects (KBO) to the WMAP ILC 7 map, whereby we can minimize the contrast in power between even and odd multipoles in the CMB, discussed discussed by Kim & Naselsky (2010). We submit our KBO de-correlated CMB signal to several tests, to analyze its validity, and find that incorporation of the KBO emission can decrease the quadrupole-octupole alignment and parity asymmetry problems, provided that the KBO signals has a non-cosmological dipole modulation, associated with the statistical anisotropy of the ILC 7 map. Additionally, we show that the amplitude of the dipole modulation, within a 2 sigma interval, is in agreement with the corresponding amplitudes, discussed by Lew (2008).Comment: 24 pages, 9 figures, 5 tables. Matches version in JCA

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    How does the cosmic large-scale structure bias the Hubble diagram?

    Get PDF
    The Hubble diagram is one of the cornerstones of observational cosmology. It is usually analysed assuming that, on average, the underlying relation between magnitude and redshift matches the prediction of a Friedmann-Lema\^itre-Robertson-Walker model. However, the inhomogeneity of the Universe generically biases these observables, mainly due to peculiar velocities and gravitational lensing, in a way that depends on the notion of average used in theoretical calculations. In this article, we carefully derive the notion of average which corresponds to the observation of the Hubble diagram. We then calculate its bias at second-order in cosmological perturbations, and estimate the consequences on the inference of cosmological parameters, for various current and future surveys. We find that this bias deeply affects direct estimations of the evolution of the dark-energy equation of state. However, errors in the standard inference of cosmological parameters remain smaller than observational uncertainties, even though they reach percent level on some parameters; they reduce to sub-percent level if an optimal distance indicator is used.Comment: 19+7 pages, 10 figures, v2 accepted by JCAP; minor changes to improve clarit

    Methodological advances, opportunities, and challenges in AAC research

    No full text
    Since its inception in 1985, the AAC journal has been publishing scientific articles related to the field of augmentative and alternative communication (AAC) that (a) report research concerning assessment, treatment, rehabilitation, and education of people who use or have the potential to use AAC systems and (b) cover theory, technology, and systems development relevant to AAC. The journal has maintained a consistent focus on the science and practice of AAC while also advancing in varied and impressive ways. Among the many developments apparent in AAC over the years, methodological advancements emerge as pivotal within the evolution of the science of AAC. This report examines the state of the science in behavioral AAC research with specific regard to changes and opportunities in research methodology. Illustrations from articles published in Volume 1 (1985) and Volume 32 (2016) of AAC are used in this paper to frame commentary on (a) contextual consideration in conducting AAC research, (b) types of research design, (c) considerations of procedural rigor, and (d) future methodological directions and resources. If the AAC field is to meet the goal of ensuring that all individuals with complex communication needs achieve their full potential, meaningful questions must be posed to address key problems, and rigorous scientific methods must be employed to answer these questions

    Evaluation des éléments moteurs de l'implémentation

    No full text
    Ce document produit par Fixsen et al. (2018) permet d'évaluer la mise en oeuvre des éléments moteurs de l'implémentation qui sont au coeur de l'Active Implementation Frameworks.Ce document produit par Fixsen et al. (2018) permet d'évaluer la mise en oeuvre des éléments moteurs de l'implémentation qui sont au coeur de l'Active Implementation Frameworks
    corecore