73 research outputs found

    Predictive value of less than moderate residual mitral regurgitation as assessed by transesophageal echocardiography for the short-term outcomes of patients with mitral regurgitation treated with mitral valve repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditionally, in patients with mitral regurgitation (MR) a successful mitral valve repair is considered when residual MR by post-pump transesophageal echocardiography (TEE) is less than moderate or absent. Little is known about the prognostic value of less than moderate (mild or mild-to-moderate) residual MR for the early outcome of patients treated with mitral valve repair.</p> <p>Methods</p> <p>Eligible for this study were patients undergoing isolated mitral valve repair. Patients with moderate or severe residual MR after valve repair were excluded. The primary endpoint of the study was the composite of death or need of reintervention.</p> <p>Results</p> <p>A total of 98 patients (54 with no residual MR-Group 1, and 44 with less than moderate residual MR-Group 2) were analyzed. Of these, 72% presented with New York Heart Association (NYHA) 3/4, and 38% were women. The primary endpoint of the study occurred in 3 (5.5%) patients in Group 1 and 6 (13.6%) patients in Group 2 MR (<it>P </it>= 0.31). There was a trend toward a higher incidence of use of inotropic drugs post-interventional (<it>P </it>= 0.12), and a longer hospital stay among patients with less than moderate residual MR (<it>P </it>= 0.18).</p> <p>Conclusion</p> <p>In our study population, patients with less than moderate residual MR had a trend toward a higher risk of early adverse outcomes as compared with patients with no residual MR by post-pump TEE. Studies with a larger patient population and longer follow-up data may be useful to better define the clinical significance of residual mild MR after mitral vale repair.</p

    Criminal and Noncriminal Psychopathy: The Devil is in the Detail

    Get PDF
    Brooks, NS ORCiD: 0000-0003-1784-099XPsychopathy is prevalent and problematic in criminal populations, but is also found to be present in noncriminal populations. In 1992, Robert Hare declared that psychopaths may also β€œbe found in the boardroom”, which has since been followed by an interest in the issue of noncriminal, or even successful, psychopathy. In this chapter, the paradox of criminal and noncriminal psychopathy is discussed with specific attention given to the similarities and differences that account for psychopathic personality across contexts. That psychopathy is a condition typified by a constellation of traits and behaviours requires wider research across diverse populations, and thus the streams of research related to criminal and noncriminal psychopathy are presented and the implications of these contrasting streams are explored

    Structure and Functional Analysis of the RNA- and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein

    Get PDF
    Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1

    Cdc7p-Dbf4p Regulates Mitotic Exit by Inhibiting Polo Kinase

    Get PDF
    Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint

    Notch and Prospero Repress Proliferation following Cyclin E Overexpression in the Drosophila Bristle Lineage

    Get PDF
    Understanding the mechanisms that coordinate cell proliferation, cell cycle arrest, and cell differentiation is essential to address the problem of how β€œnormal” versus pathological developmental processes take place. In the bristle lineage of the adult fly, we have tested the capacity of post-mitotic cells to re-enter the cell cycle in response to the overexpression of cyclin E. We show that only terminal cells in which the identity is independent of Notch pathway undergo extra divisions after CycE overexpression. Our analysis shows that the responsiveness of cells to forced proliferation depends on both Prospero, a fate determinant, and on the level of Notch pathway activity. Our results demonstrate that the terminal quiescent state and differentiation are regulated by two parallel mechanisms acting simultaneously on fate acquisition and cell cycle progression

    Noncanonical DNA Motifs as Transactivation Targets by Wild Type and Mutant p53

    Get PDF
    Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0–13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (nβ€Š=β€Š0–13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi–in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical Β½-(a single decamer) and ΒΎ-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of Β½- and ΒΎ-site REs greatly expands the p53 master regulatory network

    The Racing Algorithm: Model Selection for Lazy Learners

    No full text
    Given a set of models and some training data, we would like to find the model that best describes the data. Finding the model with the lowest generalization error is a computationally expensive process, especially if the number of testing points is high or if the number of models is large. Optimization techniques such as hill climbing or genetic algorithms are helpful but can end up with a model that is arbitrarily worse than the best one or cannot be used because there is no distance metric on the space of discrete models. In this paper we develop a technique called &quot;racing&quot; that tests the set of models in parallel, quickly discards those models that are clearly inferior and concentrates the computational effort on differentiating among the better models. Racing is especially suitable for selecting among lazy learners since training requires negligible expense, and incremental testing using leave-one-out cross validation is efficient. We use racing to select among various lazy learnin..
    • …
    corecore