9,097 research outputs found
Conformal Truncation of Chern-Simons Theory at Large
We set up and analyze the lightcone Hamiltonian for an abelian Chern-Simons
field coupled to fermions in the limit of large using conformal
truncation, i.e. with a truncated space of states corresponding to primary
operators with dimension below a maximum cutoff . In both the
Chern-Simons theory, and in the model at infinite , we compute the
current spectral functions analytically as a function of and
reproduce previous results in the limit that the truncation
is taken to . Along the way, we determine how to preserve gauge
invariance and how to choose an optimal discrete basis for the momenta of
states in the truncation space.Comment: 32+25 pages, 8 figures. v2: updated ref
Discrimination and synthesis of recursive quantum states in high-dimensional Hilbert spaces
We propose an interferometric method for statistically discriminating between
nonorthogonal states in high dimensional Hilbert spaces for use in quantum
information processing. The method is illustrated for the case of photon
orbital angular momentum (OAM) states. These states belong to pairs of bases
that are mutually unbiased on a sequence of two-dimensional subspaces of the
full Hilbert space, but the vectors within the same basis are not necessarily
orthogonal to each other. Over multiple trials, this method allows
distinguishing OAM eigenstates from superpositions of multiple such
eigenstates. Variations of the same method are then shown to be capable of
preparing and detecting arbitrary linear combinations of states in Hilbert
space. One further variation allows the construction of chains of states
obeying recurrence relations on the Hilbert space itself, opening a new range
of possibilities for more abstract information-coding algorithms to be carried
out experimentally in a simple manner. Among other applications, we show that
this approach provides a simplified means of switching between pairs of
high-dimensional mutually unbiased OAM bases
Quantum simulation of topologically protected states using directionally unbiased linear-optical multiports
It is shown that quantum walks on one-dimensional arrays of special
linear-optical units allow the simulation of discrete-time Hamiltonian systems
with distinct topological phases. In particular, a slightly modified version of
the Su-Schrieffer-Heeger (SSH) system can be simulated, which exhibits states
of nonzero winding number and has topologically protected boundary states. In
the large-system limit this approach uses quadratically fewer resources to
carry out quantum simulations than previous linear-optical approaches and can
be readily generalized to higher-dimensional systems. The basic optical units
that implement this simulation consist of combinations of optical multiports
that allow photons to reverse direction
Quantum simulation of discrete-time Hamiltonians using directionally unbiased linear optical multiports
Recently, a generalization of the standard optical multiport was proposed [Phys. Rev. A 93, 043845 (2016)]. These directionally unbiased multiports allow photons to reverse direction and exit backwards from the input port, providing a realistic linear optical scattering vertex for quantum walks on arbitrary graph structures. Here, it is shown that arrays of these multiports allow the simulation of a range of discrete-time Hamiltonian systems. Examples are described, including a case where both spatial and internal degrees of freedom are simulated. Because input ports also double as output ports, there is substantial savings of resources compared to feed-forward networks carrying out the same functions. The simulation is implemented in a scalable manner using only linear optics, and can be generalized to higher dimensional systems in a straightforward fashion, thus offering a concrete experimentally achievable implementation of graphical models of discrete-time quantum systems.This research was supported by the National Science Foundation EFRI-ACQUIRE Grant No. ECCS-1640968, NSF Grant No. ECCS-1309209, and by the Northrop Grumman NG Next. (ECCS-1640968 - National Science Foundation EFRI-ACQUIRE Grant; ECCS-1309209 - NSF Grant; Northrop Grumman NG Next
Organic synthesis: march of the machines.
Organic synthesis is changing; in a world where budgets are constrained and the environmental impacts of practice are scrutinized, it is increasingly recognized that the efficient use of human resource is just as important as material use. New technologies and machines have found use as methods for transforming the way we work, addressing these issues encountered in research laboratories by enabling chemists to adopt a more holistic systems approach in their work. Modern developments in this area promote a multi-disciplinary approach and work is more efficient as a result. This Review focuses on the concepts, procedures and methods that have far-reaching implications in the chemistry world. Technologies have been grouped as topics of opportunity and their recent applications in innovative research laboratories are described.The authors gratefully acknowledge support from UK Engineering and Physical Sciences Research Council (SVL and RMM), Woolf Fisher Trust (DEF) and Pfizer Worldwide Research and Development (CB, RJI).This is the accepted manuscript. The final version is available at http://onlinelibrary.wiley.com/doi/10.1002/anie.201410744/abstract
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Vesicular glutamatergic transmission in noise-induced loss and repair of cochlear ribbon synapses
Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner hair cells in mice lacking the vesicular glutamate transporter-3
- …
