5 research outputs found
Climate dynamics experiments using a GCM simulations
The study of surface-atmosphere interactions has begun with studies of the effect of altering the ocean and land boundaries. A ten year simulation of global climate using observed sea surface temperature anomalies has begun using the NCAR Community Climate Model (CCM1). The results for low resolution (R15) were computed for the first 8 years of the simulation and compared with the observed surface temperatures and the MSU (Microwave Sounding Unit) observations of tropospheric temperature. A simulation at higher resolution (T42) was done to ascertain the effect of interactive soil hydrology on the system response to an El Nino sea surface temperature perturbation. Initial analysis of this simulations was completed
Laboratory and theoretical studies of baroclinic processes
An understanding is being developed for processes which may be important in the atmosphere, and the definition and analysis of baroclinic experiments utilizing the geophysical fluid flow cells (GFFC) apparatus in microgravity space flights. Included are studies using numerical codes, theoretical models, and terrestrial laboratory experiments. The numerical modeling is performed in three stages: calculation of steady axisymmetric flow, calculation of fastest-growing linear eigenmodes, and nonlinear effects (first, wave-mean flow interactions, then wave-wave interactions). The code can accommodate cylindrical, spherical, or channel geometry. It uses finite differences in the vertical and meridional directions, and is spectral in the azimuthal. The theoretical work was mostly in the area of effects of topography upon the baroclinic instability problem. The laboratory experiments are performed in a cylindrical annulus which has a temperture gradient imposed upon the lower surface and an approximately isothermal outer wall, with the upper and inner surfaces being nominally thermally insulating
Global water cycle
The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction
Variations in Upper-Tropospheric Humidity and Convective Processes as Seen from SSM/T-2
Water vapor feedback, particularly involving water vapor in the upper troposphere (UTH), is widely regarded as the process with the most potential to amplify anthropogenic greenhouse forcing. Yet, our ability to quantify observationally water vapor variations in the current climate and the relationships to convective processes remains rather crude. Remote sensing from polar orbiting instruments has played a major role in documenting UTH variability, supplementing highly undersampled and poorly calibrated rawinsonde measurements. Most of our observational understanding of UTH has come from the 6.7 micrometer channel measurements which are subject to cloud contamination uncertainties. In this work we examine UTH variations present in the Special Sensor Microwave Temperature Sounder 2 (SSM/T-2) sensors flying aboard Defense Military Satellite Program (DMSP) polar orbiting satellites during the period 1993 through 2001. We employ data from the the 183.3 +/- 1 GHz channel which is far less sensitive to cirrus than IR methods. Our primary focus is on obtaining more reliable statistics of interannual behavior; i.e. How close to constant RH are interannual variations in T2 UTH over the tropics? How do temperature and moisture variations contribute regionally? The 1997/1998 strong ENS0 warming event and adjacent cool periods provide a strong signal to study, albeit a perturbation of natural climate variability. Modeling the 183.3 GHz channel using reanalysis temperature data, but with climatological water vapor, allows us to infer the separate contribution by water vapor in the observations. In addition, frozen hydrometeors produced by deep convection are also captured in the 150 GHz oxygen channel, providing an opportUnity to relate the incidence of deep convection to water vapor variability. Our results indicate a much larger variation of 183.3 GHz brightness temperatures would be observed were it not for water vapor variations positively correlated with tropical SSTs. Comparisons are made with previous studies using both IR and microwave observations to characterize UTH response to tropical SSTs
Effects of Uncertainty in TRMM Precipitation Radar Path Integrated Attenuation on Interannual Variations of Tropical Oceanic Rainfall
Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Further analysis of the frequency distribution of PR (2A25 product) rain rates suggests that the algorithm incorporates the attenuation measurement in a very conservative fashion so as to optimize the instantaneous rain rates. Such an optimization appears to come at the expense of monitoring interannual climate variability