1,617 research outputs found

    Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy

    Get PDF
    Northern Hemisphere sea ice has been declining sharply over the past decades and 2012 exhibited the lowest Arctic summer sea-ice cover in historic times. Whereas ongoing changes are closely monitored through satellite observations, we have only limited data of past Arctic sea-ice cover derived from short historical records, indirect terrestrial proxies, and low-resolution marine sediment cores. A multicentury time series from extremely long-lived annual increment-forming crustose coralline algal buildups now provides the first high-resolution in situ marine proxy for sea-ice cover. Growth and Mg/Ca ratios of these Arctic-wide occurring calcified algae are sensitive to changes in both temperature and solar radiation. Growth sharply declines with increasing sea-ice blockage of light from the benthic algal habitat. The 646-y multisite record from the Canadian Arctic indicates that during the Little Ice Age, sea ice was extensive but highly variable on subdecadal time scales and coincided with an expansion of ice-dependent Thule/Labrador Inuit sea mammal hunters in the region. The past 150 y instead have been characterized by sea ice exhibiting multidecadal variability with a long-term decline distinctly steeper than at any time since the 14th century

    Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    Get PDF
    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene (~3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming

    A propensity criterion for networking in an array of coupled chaotic systems

    Full text link
    We examine the mutual synchronization of a one dimensional chain of chaotic identical objects in the presence of a stimulus applied to the first site. We first describe the characteristics of the local elements, and then the process whereby a global nontrivial behaviour emerges. A propensity criterion for networking is introduced, consisting in the coexistence within the attractor of a localized chaotic region, which displays high sensitivity to external stimuli,and an island of stability, which provides a reliable coupling signal to the neighbors in the chain. Based on this criterion we compare homoclinic chaos, recently explored in lasers and conjectured to be typical of a single neuron, with Lorenz chaos.Comment: 4 pages, 3 figure

    Magnetic Field-Induced Condensation of Triplons in Han Purple Pigment BaCuSi2_2O6_6

    Full text link
    Besides being an ancient pigment, BaCuSi2_2O6_6 is a quasi-2D magnetic insulator with a gapped spin dimer ground state. The application of strong magnetic fields closes this gap creating a gas of bosonic spin triplet excitations called triplons. The topology of the spin lattice makes BaCuSi2_2O6_6 an ideal candidate for studying the Bose-Einstein condensation of triplons as a function of the external magnetic field, which acts as a chemical potential. In agreement with quantum Monte Carlo numerical simulations, we observe a distinct lambda-anomaly in the specific heat together with a maximum in the magnetic susceptibility upon cooling down to liquid Helium temperatures.Comment: published on August 20, 200

    Dynamics of lattice spins as a model of arrhythmia

    Get PDF
    We consider evolution of initial disturbances in spatially extended systems with autonomous rhythmic activity, such as the heart. We consider the case when the activity is stable with respect to very smooth (changing little across the medium) disturbances and construct lattice models for description of not-so-smooth disturbances, in particular, topological defects; these models are modifications of the diffusive XY model. We find that when the activity on each lattice site is very rigid in maintaining its form, the topological defects - vortices or spirals - nucleate a transition to a disordered, turbulent state.Comment: 17 pages, revtex, 3 figure

    Thermal Impact on Spiking Properties in Hodgkin-Huxley Neuron with Synaptic Stimulus

    Full text link
    The effect of environmental temperature on neuronal spiking behaviors is investigated by numerically simulating the temperature dependence of spiking threshold of the Hodgkin-Huxley neuron subject to synaptic stimulus. We find that the spiking threshold exhibits a global minimum in a "comfortable temperature" range where spike initiation needs weakest synaptic strength, indicating the occurrence of optimal use of synaptic transmission in neural system. We further explore the biophysical origin of this phenomenon in ion channel gating kinetics and also discuss its possible biological relevance in information processing in neural systems.Comment: 10 pages, 4 figure

    New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations. II

    Full text link
    In the first part of this paper math-ph/0612078, a complete description of Q-conditional symmetries for two classes of reaction-diffusion-convection equations with power diffusivities is derived. It was shown that all the known results for reaction-diffusion equations with power diffusivities follow as particular cases from those obtained in math-ph/0612078 but not vise versa. In the second part the symmetries obtained in are successfully applied for constructing exact solutions of the relevant equations. In the particular case, new exact solutions of nonlinear reaction-diffusion-convection (RDC) equations arising in application and their natural generalizations are found

    Festivals of Freedom: Memory and Meaning in African American Emancipation Celebrations, 1808-1915

    Get PDF
    Jubilee Commemorating the abolition of slavery Mitch Kachun has written an important book on African American traditions of historical commemoration, a topic that has escaped the attention of historians for too long:. Perhaps in our present age, when pundits complain that public...
    corecore