518 research outputs found

    The Uncertainty in Newton's Constant and Precision Predictions of the Primordial Helium Abundance

    Full text link
    The current uncertainty in Newton's constant, G_N, is of the order of 0.15%. For values of the baryon to photon ratio consistent with both cosmic microwave background observations and the primordial deuterium abundance, this uncertainty in G_N corresponds to an uncertainty in the primordial 4He mass fraction, Y_P, of +-1.3 x 10^{-4}. This uncertainty in Y_P is comparable to the effect from the current uncertainty in the neutron lifetime, which is often treated as the dominant uncertainty in calculations of Y_P. Recent measurements of G_N seem to be converging within a smaller range; a reduction in the estimated error on G_N by a factor of 10 would essentially eliminate it as a source of uncertainty in the calculation of the primordial 4He abundance.Comment: 3 pages, no figures, fixed typos, to appear in Phys. Rev.

    Intracoronary gamma-radiation therapy after angioplasty inhibits recurrence in patients with in-stent restenosis

    Get PDF
    BACKGROUND: Treatment of in-stent restenosis presents a critical limitation of intracoronary stent implantation. Ionizing radiation has been shown to decrease neointimal formation within stents in animal models and in initial clinical trials. We studied the effects of intracoronary gamma-radiation therapy versus placebo on the clinical and angiographic outcomes of patients with in-stent restenosis. METHODS AND RESULTS: One hundred thirty patients with in-stent restenosis underwent successful coronary intervention and were then blindly randomized to receive either intracoronary gamma-radiation with (192)Ir (15 Gy) or placebo. Four independent core laboratories blinded to the treatment protocol analyzed the angiographic and intravascular ultrasound end points of restenosis. Procedural success and in-hospital and 30-day complications were similar among the groups. At 6 months, patients assigned to radiation therapy required less target lesion revascularization and target vessel revascularization (9 [13.8%] and 17 [26.2%], respectively) compared with patients assigned to placebo (41 [63.1%, P=0.0001] and 44 [67.7%, P=0.0001], respectively). Binary angiographic restenosis was lower in the irradiated group (19% versus 58% for placebo, P=0.001). Freedom from major cardiac events was lower in the radiation group (29.2% versus 67.7% for placebo, P<0.001). CONCLUSIONS: Intracoronary gamma-radiation used as adjunct therapy for patients with in-stent restenosis significantly reduces both angiographic and clinical restenosis

    Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial

    Get PDF
    BACKGROUND: Restenosis after percutaneous coronary intervention (PCI) is a major problem affecting 15% to 30% of patients after stent placement. No oral agent has shown a beneficial effect on restenosis or on associated major adverse cardiovascular events. In limited trials, the oral agent tranilast has been shown to decrease the frequency of angiographic restenosis after PCI. METHODS AND RESULTS: In this double-blind, randomized, placebo-controlled trial of tranilast (300 and 450 mg BID for 1 or 3 months), 11 484 patients were enrolled. Enrollment and drug were initiated within 4 hours after successful PCI of at least 1 vessel. The primary end point was the first occurrence of death, myocardial infarction, or ischemia-driven target vessel revascularization within 9 months and was 15.8% in the placebo group and 15.5% to 16.1% in the tranilast groups (P=0.77 to 0.81). Myocardial infarction was the only component of major adverse cardiovascular events to show some evidence of a reduction with tranilast (450 mg BID for 3 months): 1.1% versus 1.8% with placebo (P=0.061 for intent-to-treat population). The primary reason for not completing treatment was > or =1 hepatic laboratory test abnormality (11.4% versus 0.2% with placebo, P<0.01). In the angiographic substudy composed of 2018 patients, minimal lumen diameter (MLD) was measured by quantitative coronary angiography. At follow-up, MLD was 1.76+/-0.77 mm in the placebo group, which was not different from MLD in the tranilast groups (1.72 to 1.78+/-0.76 to 80 mm, P=0.49 to 0.89). In a subset of these patients (n=1107), intravascular ultrasound was performed at follow-up. Plaque volume was not different between the placebo and tranilast groups (39.3 versus 37.5 to 46.1 mm(3), respectively; P=0.16 to 0.72). CONCLUSIONS: Tranilast does not improve the quantitative measures of restenosis (angiographic and intravascular ultrasound) or its clinical sequelae

    Strength of the 18F(p, α)15O resonance at Ec.m. = 330 keV

    Get PDF
    The astrophysical rate of the 18F(p,α)15O reaction at nova temperatures is critical to understanding production of the radioisotope 18F, which may be used to constrain nova models via observations with the coming generation of satellite-based Îł-ray telescopes. As such, a measurement is made of the strength of this resonance using a radioactive 18F beam at the HRIBF. As a result, it is indicated that the 18F(p,α)15O reaction rate is lower than previous estimates by a factor of ∌2
    • 

    corecore