39 research outputs found

    Dwarf Galaxy Mass Estimators vs. Cosmological Simulations

    Get PDF
    We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly-used mass estimators from Walker et al.(2009) and Wolf et al.(2010), both of which depend on the observed line-of-sight velocity dispersion and the 2D half-light radius of the galaxy, ReRe. The simulations are part of the the Feedback in Realistic Environments (FIRE) project and include twelve systems with stellar masses spanning 105107M10^{5} - 10^{7} M_{\odot} that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: MWolf/Mtrue=0.980.12+0.19M_{Wolf}/M_{true} = 0.98^{+0.19}_{-0.12} and MWalker/Mtrue=1.070.15+0.21M_{Walker}/M_{true} =1.07^{+0.21}_{-0.15}, with errors reflecting the 68% range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios c/a0.40.7 c/a \simeq 0.4-0.7. The accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off r4.2\propto r^{-4.2} at large rr, they are well fit by S\'ersic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is ReRe . Determining ReRe by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.Comment: Submitted to MNRAS. 11 pages, 12 figures, comments welcom

    SIDM on FIRE: Hydrodynamical Self-Interacting Dark Matter simulations of low-mass dwarf galaxies

    Get PDF
    We compare a suite of four simulated dwarf galaxies formed in 1010M^{10} M_{\odot} haloes of collisionless Cold Dark Matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for dark matter self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (FIRE) project and utilize the FIRE-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in Self-Interacting Dark Matter (SIDM) with σ/m=1cm2/g\sigma/m= 1\, cm^2/g are very similar to those in CDM (spanning M105.77.0MM_{\star} \approx 10^{5.7 - 7.0} M_{\odot}) and all runs lie on a similar stellar mass -- size relation. The logarithmic dark matter density slope (α=dlogρ/dlogr\alpha=d\log \rho / d\log r) in the central 250500250-500 pc remains steeper than α=0.8\alpha= -0.8 for the CDM-Hydro simulations with stellar mass M106.6MM_{\star} \sim 10^{6.6} M_{\odot} and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α>0.4\alpha >-0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include FIRE-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting SIDM will be easier to falsify than CDM using low-mass galaxies. Our FIRE simulations predict that galaxies less massive than M<3×106MM_{\star} < 3 \times 10^6 M_{\odot} provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.Comment: 10 Pages, 7 figures, submitted to MNRA

    A Predicted Correlation Between Age Gradient and Star Formation History in FIRE Dwarf Galaxies

    Get PDF
    We explore the radial variation of star formation histories in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 9 low-mass field dwarfs with M_ star = 10^5 - 10^7 M_sun from previous FIRE results, and a new suite of 17 higher mass field dwarfs with M_star = 10^7 - 10^9 M_sun introduced here. We find that age gradients are common in our dwarfs, with older stars dominant at large radii. The strength of the gradient correlates with overall galaxy age such that earlier star formation produces a more pronounced gradient. The relation between formation time and strength of the gradient is driven by both mergers and star-formation feedback. Mergers can both steepen and flatten the age gradient depending on the timing of the merger and star formation history of the merging galaxy. In galaxies without significant mergers, early feedback pushes stars to the outskirts at early times. Interestingly, among galaxies without mergers, those with large dark matter cores have flatter age gradients because these galaxies have more late-time feedback. If real galaxies have age gradients as we predict, stellar population studies that rely on sampling a limited fraction of a galaxy can give a biased view of its global star formation history. We show that central fields can be biased young by a few Gyrs while outer fields are biased old. Fields positioned near the 2D half-light radius will provide the least biased measure of a dwarf galaxy's global star formation history.Comment: 13 pages, 8 figures. Submitted to MNRAS, comments welcom

    The no-spin zone: rotation vs dispersion support in observed and simulated dwarf galaxies

    Get PDF
    We perform a systematic Bayesian analysis of rotation vs. dispersion support (v_(rot)/σ) in 40 dwarf galaxies throughout the Local Volume (LV) over a stellar mass range 10^(3.5) M_⊙ < M⋆ < 10^8 M_⊙. We find that the stars in ∼90% of the LV dwarf galaxies studied -- both satellites and isolated systems -- are dispersion-supported. In particular, we show that 7/10 *isolated* dwarfs in our sample have stellar populations with v_(rot)/σ<0.6. All have v_(rot)/σ≲2. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally-supported stellar disks, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion-supported stars. We see no clear trend between v_(rot)/σ and distance to the closest L⋆ galaxy, nor between v_(rot)/σ and M⋆ within our mass range. We apply the same Bayesian analysis to four FIRE hydrodynamic zoom-in simulations of isolated dwarf galaxies (10^9M⊙<M_(vir)<10^(10)M⊙) and show that the simulated *isolated* dIrr galaxies have stellar ellipticities and stellar v_(rot)/σ ratios that are consistent with the observed population of dIrrs *and* dSphs without the need to subject these dwarfs to any external perturbations or tidal forces. We posit that most dwarf galaxies form as puffy, dispersion-supported systems, rather than cold, angular momentum-supported disks. If this is the case, then transforming a dIrr into a dSph may require little more than removing its gas

    Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment

    Get PDF
    We study star formation histories (SFHs) of 500\simeq500 dwarf galaxies (stellar mass M=105109MM_\ast = 10^5 - 10^9\,M_\odot) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher-mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of "satellite vs. central" and "LG vs. individual MWvs. isolated dwarf central." Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in the "near field" have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated ("true field") dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for M=106107MM_\ast = 10^6 - 10^7\,M_\odot but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG.Comment: Main text: 11 pages, 8 figures; appendices: 4 pages, 4 figures. Submitted to MNRAS; comments welcom

    Dwarf Galaxies in CDM, WDM, and SIDM: Disentangling Baryons and Dark Matter Physics

    Get PDF
    We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of Mhalo1010M_\mathrm{halo} \approx 10^{10}\,M_\odot at z=0z=0, across a range of dark matter models. For the first time, we compare how both self-interacting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r1/2<500_{1/2}<500 pc) have lower σ/Vmax\sigma_\star/V_\mathrm{max} ratios, reinforcing the idea that smaller dwarfs may reside in halos that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in Λ\LambdaCDM. The V1/2_{1/2}-r1/2_{1/2} relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Spatially-resolved rotation curves in the central regions (<400<400 pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r1/2_{1/2} values can only originate from dark matter self-interactions.Comment: 16 pages, 12 figures. V2: matches version accepted by MNRA

    Gas Kinematics in FIRE Simulated Galaxies Compared to Spatially Unresolved HI Observations

    Get PDF
    The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotation-supported gas disks produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σV/\sigma, and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of \sim2000 low-redshift, HI-detected galaxies with Mstar=10711MM_{\rm star} = 10^{7-11} M_{\odot} and compare to the simulated galaxies. At Mstar1010MM_{\rm star} \gtrsim 10^{10} M_{\odot}, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotation-supported disks. Both the observed and simulated line profiles become more Gaussian-like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotation to dispersion support more strongly: at Mstar=10810MM_{\rm star} = 10^{8-10}M_{\odot}, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion-supported. Most of the lower-mass simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotation vs. dispersion support.Comment: 10 pages, 5 figures, plus appendices. Accepted to MNRAS with minor revisions since v

    Fire in the field: simulating the threshold of galaxy formation

    Get PDF
    We present a suite of 15 cosmological zoom-in simulations of isolated dark matter haloes, all with masses of M_(halo) ≈ 10^(10) M_⊙ at z = 0, in order to understand the relationship among halo assembly, galaxy formation and feedback's effects on the central density structure in dwarf galaxies. These simulations are part of the Feedback in Realistic Environments (FIRE) project and are performed at extremely high resolution (m_(baryon) = 500 M_⊙, m_(dm) = 2500 M_⊙). The resultant galaxies have stellar masses that are consistent with rough abundance matching estimates, coinciding with the faintest galaxies that can be seen beyond the virial radius of the Milky Way (M_*/M_⊙ ≈ 10^5 − 10^7). This non-negligible spread in stellar mass at z = 0 in haloes within a narrow range of virial masses is strongly correlated with central halo density or maximum circular velocity V_(max), both of which are tightly linked to halo formation time. Much of this dependence of M_* on a second parameter (beyond M_(halo)) is a direct consequence of the M_(halo) ∼ 10^(10) M_⊙ mass scale coinciding with the threshold for strong reionization suppression: the densest, earliest-forming haloes remain above the UV-suppression scale throughout their histories while late-forming systems fall below the UV-suppression scale over longer periods and form fewer stars as a result. In fact, the latest-forming, lowest-concentration halo in our suite fails to form any stars. Haloes that form galaxies with M_⋆ ≳ 2 × 10^6 M_⊙ have reduced central densities relative to dark-matter-only simulations, and the radial extent of the density modifications is well-approximated by the galaxy half-mass radius r_(1/2). Lower-mass galaxies do not modify their host dark matter haloes at the mass scale studied here. This apparent stellar mass threshold of M_⋆ ≈ 2 × 10^6 − 2 × 10^(−4) M_(halo) is broadly consistent with previous work and provides a testable prediction of FIRE feedback models in Λcold dark matter
    corecore